Skip to main content
Log in

An Efficient Algorithm for Polarizable Interactions: A Uniformly Distributed One-Dimensional Case

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

We present details of an algorithm for the solution of the one-dimensional atom–dipole interactions problem for a uniform distribution that is based on the combination of the full multigrid and cell multipole methods. The rate of convergence of this technique is faster than current iterative methods used to solve this problem. It can be extended to a three-dimensional algorithm that will allow people to include polarizable interactions in simulations for a more accurate description of simulated systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applequist, J.: An atom dipole interaction model for molecular optical properties, Acc. Chem. Res. 10 (1977), 79–85.

    CAS  Google Scholar 

  2. Applequist, J., Carl, J. R. and Fung, K.-K.: An atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities, J. Am. Chem. Soc. 94 (1972), 2952–2960.

    CAS  Google Scholar 

  3. Bernardo, D. N., Ding, Y., Krogh-Jespersen, K. and Levy, R. M.: An anisotropic polarizable water model: Incorporation of all-atom polarizabilities into molecular mechanics force fields, J. Phys. Chem. 98 (1994), 4180–4187.

    Article  CAS  Google Scholar 

  4. Bernardo, D. N., Ding, Y., Krogh-Jespersen, K. and Levy, R. M.: Evaluating polarizable potentials on distributed memory parallel computers: Program development and applications, J. Comput. Chem. 16 (1995), 1141–1152.

    CAS  Google Scholar 

  5. Birge, R. R.: Calculation of molecular polarizabilities using an anisotropic atom point dipole interaction model which includes the effect of electron repulsion, J. Chem. Phys. 72 (1980), 5312–5319.

    CAS  Google Scholar 

  6. Bode, K. A. and Applequist, J.: A new optimization of atom polarizabilities in halomethanes, aldehydes, ketones, and amides by way of the atom dipole interaction model, J. Phys. Chem. 100 (1996), 17820–17824.

    CAS  Google Scholar 

  7. Brandt, A.: Multi-level adaptive solutions to boundary-value problems, Math. Comp. 31 (1977), 333–390.

    Google Scholar 

  8. Briggs, W. L., Henson, V. E. and McCormick, S. F.: A Multigrid Tutorial, Society for Industrial and Applied Mathematics, Philadelphia, 2000.

    Google Scholar 

  9. Bröker, O., Grote, M. J., Mayer, C. and Reusken, A.: Robust parallel smoothing for multigrid via sparse approximate inverses, SIAM J. Sci. Comput. 23 (2001), 1396–1417.

    Article  Google Scholar 

  10. Burnham, C. J., Li, J., Xantheas, S. S. and Leslie, M.: The parametrization of a Thole-type all-atom polarizable water model from first principles and its application to the study of water clusters (n=2–21) and the phonon spectrum of ice Ih, J. Chem. Phys. 110 (1999), 4566–4581.

    CAS  Google Scholar 

  11. Cai, Z., Mandel, J. and McCormick, S.: Multigrid methods for nearly singular linear equations and eigenvalue problems, SIAM J. Numer. Anal. 34 (1997), 178–200.

    Google Scholar 

  12. Dang, L. X. and Chang, T.-M.: Molecular dynamics study of water clusters, liquid, and liquid–vapor interface of water with many-body potentials, J. Chem. Phys. 106 (1997), 8149–8159.

    CAS  Google Scholar 

  13. Demmel, J. A.: Applied Numerical Linear Algebra, Society for Industrial and Applied Mathematics, Philadelphia, 1997.

    Google Scholar 

  14. Ding, H.-Q., Karasawa, N. and Goddard, W. A.: Atomic level simulations on a million particles: The cell multipole method for Coulomb and London nonbond interactions, J. Chem. Phys. 97 (1992), 4309–4315.

    CAS  Google Scholar 

  15. Ding, H.-Q., Karasawa, N. and Goddard, W. A.: The reduced cell multipole method for Coulomb interactions in periodic systems with million-atom unit cells, Chem. Phys. Lett. 196 (1992), 6–13.

    CAS  Google Scholar 

  16. Dinh, T.-L. and Huber, G. A.: Development of an algorithm to compute polarizable interactions using multigrid and multipole methods, in Proc. International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences, 2003, pp. 329–335.

  17. Fedorenko, R. P.: A relaxation method for solving elliptic difference equations, USSR Comput. Math. Math. Phys. 1 (1961), 1092–1096.

    Google Scholar 

  18. Fedorenko, R. P.: The speed of convergence of one iterative process, USSR Comput. Math. Math. Phys. 4 (1965), 227–235.

    Google Scholar 

  19. Gao, J. and Xia, X.: A priori evaluation of aqueous polarization effects through Monte Carlo QM-MM simulations, Science 258 (1992), 631–635.

    CAS  PubMed  Google Scholar 

  20. Gao, J., Pavelites, J. J. and Habibollazadeh, D.: Simulation of liquid amides using a polarizable intermolecular potential function, J. Phys. Chem. 100 (1996), 2689–2697.

    CAS  Google Scholar 

  21. Gibbon, P. and Sutmann, G.: Long range interactions in many-particle simulation, in J. Grotendorst, D. Marx and A. Muramatsu (eds), Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, John von Neumann Institute for Computing, Jülich, 2002, pp. 467–506.

  22. Greengard, L. and Rokhlin, V.: A fast algorithm for particle simulations, J. Comput. Phys. 73 (1987), 325–348.

    Google Scholar 

  23. Hackenberg, M. G., Joppich, W., Sontowski, T. and Mijalković, S.: A parallel multigrid solver applied to the simulation of thermal oxidation and diffusion processes, Computational Materials Science 11 (1998), 105–108.

    CAS  Google Scholar 

  24. Han, B., Zhou, X. and Liu, J.: Adaptive multigrid method for numerical solutions of elastic wave equation, Appl. Math. Comput. 133 (2002), 609–614.

    Google Scholar 

  25. Janke, W.: Nonlocal Monte Carlo algorithms for statistical physics applications, Math. Comput. Simul. 47 (1998), 329–346.

    MathSciNet  Google Scholar 

  26. Jensen, L., Åstrand, P.-O., Osted, A., Kongsted, J. and Mikkelsen, K. V.: Polarizability of molecular clusters as calculated by a dipole interaction model, J. Chem. Phys. 116 (2002), 4001–4010.

    CAS  Google Scholar 

  27. Kimmel, R. and Yavneh, I.: An algebraic multigrid approach for image analysis, SIAM J. Sci. Comput. 24 (2003), 1218–1231.

    Google Scholar 

  28. Kutteh, R. and Nicholas, J. B.: Implementing the cell multipole method for dipolar and charged dipolar systems, Comput. Phys. Commun. 86 (1995), 236–254.

    CAS  Google Scholar 

  29. Lay, D. C.: Linear Algebra and Its Applications, Pearson Addison Wesley, Reading, 1998.

    Google Scholar 

  30. Leach, A. R.: Molecular Modelling: Principles and Applications, Prentice-Hall, Upper Saddle River, 2001.

    Google Scholar 

  31. Lim, K.-T., Brunett, S., Iotov, M., McClurg, R. B., Vaidehi, N., Dasgupta, S., Taylor, S. and Goddard, W. A.: Molecular dynamics for very large systems on massively parallel computers: The MPSim program, J. Comput. Chem. 18 (1997), 501–521.

    CAS  Google Scholar 

  32. Livne, O.: A multigrid tutorial, http://sccm.stanford.edu/~livne/lectures.html.

  33. Ogata, S., Shimojo, F., Kalia, R. K., Nakano, A. and Vashishta, P.: Hybrid quantum mechanical/molecular dynamics simulation on parallel computers: Density functional theory on real-space multigrids, Comput. Phys. Commun. 149 (2002), 30–38.

    CAS  Google Scholar 

  34. Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P.: Numerical Recipes in C++, Cambridge University Press, Cambridge, 2002.

    Google Scholar 

  35. Soto, P. and Mark, A. E.: The effect of the neglect of electronic polarization in peptide folding simulations, J. Phys. Chem. B 106 (2002), 12830–12833.

    CAS  Google Scholar 

  36. Stüben, K.: A review of algebraic multigrid, J. Comput. Appl. Math. 128 (2001), 281–309.

    Article  Google Scholar 

  37. Thole, B. T.: Molecular polarizabilities calculated with a modified dipole interactions, Chem. Phys. 59 (1981), 341–350.

    CAS  Google Scholar 

  38. Trottenberg, U., Oosterlee, C. and Schüller, A.: Multigrid, Academic Press, San Diego, 2001.

    Google Scholar 

  39. van der Vaart, A. and Merz, K. M.: Divide and conquer interaction energy decomposition, J. Phys. Chem. A 103 (1999), 3321–3329.

    Google Scholar 

  40. Wallqvist, A. and Berne, B. J.: Effective potentials for liquid water using polarizable and nonpolarizable models, J. Phys. Chem. 97 (1993), 13841–13851.

    Article  CAS  Google Scholar 

  41. Wesseling, P.: An Introduction to Multigrid Methods, Wiley, Chichester, 1992.

    Google Scholar 

  42. Wesseling, P. and Oosterlee, C. W.: Geometric multigrid with applications to computational fluid dynamics, J. Comput. Appl. Math. 128 (2001), 311–334.

    Google Scholar 

  43. Wittum, G.: On the robustness of ILU smoothing, SIAM J. Sci. Comput. 10 (1989), 699–717.

    Google Scholar 

  44. Yavneh, I.: On red–black SOR smoothing in multigrid, SIAM J. Sci. Comput. 17 (1996),180–192.

    Google Scholar 

  45. York, D. M., Lee, T.-S. and Yang, W.: Quantum mechanical study of aqueous polarization effects on biological macromolecules, J. Am. Chem. Soc. 118 (1996), 10940–10941.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thuy-Linh Dinh.

Additional information

Mathematics Subject Classifications (2000)

65F10, 70-08, 92C05.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinh, TL., Huber, G.A. An Efficient Algorithm for Polarizable Interactions: A Uniformly Distributed One-Dimensional Case. J Math Model Algor 4, 111–128 (2005). https://doi.org/10.1007/s10852-004-3526-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-004-3526-y

Keywords

Navigation