Skip to main content

Advertisement

Log in

Variography for Model Selection in Local Polynomial Regression with Spatial Data

  • Research Article
  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

In this work, we apply variographic techniques from spatial statistics to the problem of model selection in local polynomial regression with multivariate data. These techniques permit selection of the kernel and smoothing matrix with less computational load and interpretation of the regularity of the regression function in different directions. Moreover, they may represent the only feasible alternative for problems of a certain dimensionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cressie, N.: Statistics for Spatial Data, Wiley, 1993.

  2. Fan, J. and Gijbels, I.: Local Polynomial Modeling and Its Applications, Chapman & Hall, 1996.

  3. Francisco-Fernandez, M. and Opsomer, J. D.: Smoothing parameter selection methods for nonparametric regression with spatially correlated errors, in: Proceedings of the ISI International Conference, Universidad de Santiago de Compostela, Spain, 2003.

  4. Hart, J.: Some automated methods of smoothing time-dependent data, Nonparametr. Statist. 6 (1996), 115–142.

    Article  MATH  MathSciNet  Google Scholar 

  5. Journel, A. G. and Huijbregts, C. J.: Mining Geostatistics, Academic, 1978.

  6. Kent, J. T.: Continuity properties for random fields, Ann. Probab. 17 (1989), 1432–1440.

    Article  MATH  MathSciNet  Google Scholar 

  7. Matias, J. M., Vaamonde, A., Taboada, J., and Gonzalez-Manteiga, W.: Comparison between kriging and neural networks with application to the exploitation of a slate mine, Math. Geol. 36 (2004), 485–508.

    Article  Google Scholar 

  8. Matias, J. M., Vaamonde, A., Taboada, J., and Gonzalez-Manteiga, W.: Support vector machines and gradient boosting for graphical estimation of a slate deposit, J. Stoch. Environ. Res. Risk Assess. 18 (2004), 309–323.

    Article  MATH  Google Scholar 

  9. Opsomer, J. D., Wang, Y., and Yang, Y.: Non parametric regression with correlated errors, Stat. Sci. 16 (2001), 134–153.

    Article  MATH  MathSciNet  Google Scholar 

  10. Stein, M.: Interporlation of Spatial Data: Some Theory for Kriging, Springer, 1999.

  11. Taboada, J., Saavedra, A., and Vaamonde, A.: Evaluation of a slate extraction bank, Trans. Inst. Min. Metall., A, 110 (2001) 40–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Matías.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matías, J.M., González-Manteiga, W., Francisco-Fernández, M. et al. Variography for Model Selection in Local Polynomial Regression with Spatial Data. J Math Model Algor 4, 237–252 (2005). https://doi.org/10.1007/s10852-005-9001-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-005-9001-6

Key words

Mathematical Subject Classification (2000)