Abstract
Using an equivalent expression for solutions of second order Dirichlet problems in terms of Ito type stochastic differential equations, we develop a numerical solution method for Dirichlet boundary value problems. It is possible with this idea to solve for solution values of a partial differential equation at isolated points without having to construct any kind of mesh and without knowing approximations for the solution at any other points. Our method is similar to a recently published approach, but differs primarily in the handling of the boundary. Some numerical examples are presented, applying these techniques to model Laplace and Poisson equations on the unit disk.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Abramowitz M. and Stegun I.A.: Handbook of Mathematical Functions, Dover Pub. Inc., New York, 1968.
Bonami A., Karoui N., Roynette B. and Reinhard, H.: Processus de diffusion associé a un opérateur elliptique dégénré, Ann. Inst. Henri Poincaré, B 7 (1971), 31–80.
Buchmann F. M. and Petersen W. P.: Solving Dirichlet problems numerically using the Feynman–Kac representation, BIT Numer. Math. 43(3) (2003), 519–540.
Cohn P. M.: Algebra, Vol. 1. London, Wiley, 1974.
Dynkin E. B.: Morkov Processes, Vol. I & II (translated into English from the original Russian), Berlin Heidelberg New York, Springer, 1965.
Fleming W. H. and Rishel R. W.: Deterministic and Stochastic Optimal Control, Berlin Heidelberg New York, Springer, 1975.
Freidlin M. I.: On the factorization of nonnegative matrices, Theory Prob. Appl 13 (1968), 354–358.
Friedman A.: Partial Differential Equationsof Parabolic Type, Englewood Cliffs, New Jersey, Prentice Hall 1964.
Friedman A.: Partial Differential Equations, New York, Holt, 1969.
Friedman A.: Stochastic Differential Equationsand Applications, Vol. 1. New York, Academic 1975.
Friedman A.: Stochastic Differential Equationsand Applications, Vol. 2. New York, Academic 1976.
Gilbarg D. and Trudinger N. S.: Elliptic Partial Differential Equationsof Second Order, Berlin, Heidelberg, New York, Springer, 1977.
Jost J.: Partial Differential Equations, Berlin, Heidelberg, New York, Springer, 2002
Kac M.: On distributions of certain Wiener functionals, Trans. Am. Math. Soc 65 (1949), 1–13
Kac M.: On some connections between probability theory and differential and integral equations, Proc. 2nd Berkeley Symp. Math. Stat. & Prob. 65 (1951), 189–215.
Karoui N. and Reinhard H.: Processus de Diffusion dans \(\mathbb{R}^{n} \), Lect. Notes in Math., No. 321, Berlin, Heidelberg, New York, Springer,(1973), pp. 95–116.
Kato T.: Perturbation Theory for Linear Operators, Berlin, Heidelberg, New York, Springer, 1995.
Kuo H. H.: Differential and stochastic equations in abstract Wiener space, J. Funct. Anal. 12 (1973), 246–256.
Kushner H. J.: Probabilistic methods for finite difference approximations to degenerate elliptic and parabolic equations with neuman and dirichlet boundary conditions, J. Math. Anal. Appl. 53 (1976), 644–668.
Kushner H. J.: Probability Methods for Approximations in Stochastic Control and for Elliptic Equations, New York, Academic, 1977
Maruyama G.: Continuous Markov processes and stochastic equations, Rend. Circ. Mat. Palermo 4 (1955), 48–90.
McShane E. J.: Stochastic Calculus and Stochastic Models, New York, Academic, 1974.
Phillips R. S. and Sarason L.: Elliptic–parabolic equations of the second order, J. Math. Mech. 17 (1968), 891–918.
Rosenblatt M.: On a class of Markov processes, Trans. Am. Math. Soc. 71 (1951), 120–135.
Soldevilla M. M. Cuestiones Notables en Ecuaciones Diferenciales Estocásticas y su Relación con Ecuaciones en Derivadas Parciales, Tesina de Licenciatura, Facultad de Ciencias, Universidad de Zaragoza, 1979.
Stroock D. W. and Varadhan S. R. S.: On degenerate elliptic–parabolic operators of second order and their associated diffusions, Commun. Pure Appl. Math 25 (1972), 651–713.
Author information
Authors and Affiliations
Corresponding author
Additional information
Visiting Professor, Universidad de Salamanca.
Rights and permissions
About this article
Cite this article
Vigo-Aguiar, J., Ardanuy-Albajar, R. & Wade, B.A. Stochastic methods for Dirichlet problems. J Math Model Algor 4, 317–330 (2005). https://doi.org/10.1007/s10852-005-9007-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10852-005-9007-0