Skip to main content
Log in

Computing Minimal Forecast Horizons:An Integer Programming Approach

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

In this paper, we use integer programming (IP) to compute minimal forecast horizons for the classical dynamic lot-sizing problem (DLS). As a solution approach for computing forecast horizons, integer programming has been largely ignored by the research community. It is our belief that the modelling and structural advantages of the IP approach coupled with the recent significant developments in computational integer programming make for a strong case for its use in practice. We formulate some well-known sufficient conditions, and necessary and sufficient conditions (characterizations) for forecast horizons as feasibility/optimality questions in 0–1 mixed integer programs. An extensive computational study establishes the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson, J. E., Morton, T. E. and Thompson, G. L.: A forward algorithm and planning horizon procedure for the production smoothing problem without inventory, Eur. J. Oper. Res. 15 (1984), 348–365.

    Article  MATH  Google Scholar 

  2. Balas, E., Ceria, S. and Cornue´jols, G.: Mixed 0–1 programming by lift-and-project in a branch-and-cut framework, Manag. Sci. 42 (1996), 1229–1246.

    MATH  Google Scholar 

  3. Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P. and Vance, P. H.: Branch-and Price: Column generation for solving integer programs, Oper. Res. 46 (1998), 316–329.

    MATH  MathSciNet  Google Scholar 

  4. Bastian, M. and Volkmer, M.: A perfect forward procedure for a single facility dynamic location relocation problem, Oper. Res. Lett. 12 (1992), 11–16.

    Article  MATH  MathSciNet  Google Scholar 

  5. Bean, J., Smith, R. L. and Yano, C.: Forecast horizons for the discounted dynamic lot size model allowing speculative motive, Nav. Res. Logist. Q. 34 (1987), 761–774.

    Article  MATH  MathSciNet  Google Scholar 

  6. Bensoussan, A., Crouhy, J. and Proth, J. M.: Mathematical Theory of Production Planning, Advanced Series in Management, North-Holland, Amsterdam, 1983.

    Google Scholar 

  7. Bes, C. and Sethi, S. P.: Concepts of forecast and decision horizons: applications to dynamic stochastic optimization problems, Math. Oper. Res. 13(2) (1988), 295–310.

    MATH  MathSciNet  Google Scholar 

  8. Blocher, J. D. and Chand, S.: A forward branch-and-search algorithm and forecast horizon results for the changeover scheduling problem, Eur. J. Oper. Res. 91 (1996), 456–470.

    Article  MATH  Google Scholar 

  9. Chand, S., Hsu, V. N. and Sethi, S. P.: Forecast, solution, and rolling horizons in operations management problems: a classified bibliography, Manuf. Serv. Oper. Manag. 4(1) (2002), 25–43.

    Article  Google Scholar 

  10. Chand, S. and Morton, E.: Minimal forecast horizon procedures for dynamic lot size models, Nav. Res. Logist. Q. 33 (1986), 111–121.

    Article  MATH  MathSciNet  Google Scholar 

  11. Chand, S. and Morton, E.: A perfect planning horizon procedure for a deterministic cash balance problem, Manag. Sci. 28(6) (1982), 652–669.

    MATH  Google Scholar 

  12. Chand, S. and Sethi, S. P.: Planning horizon procedures for machine replacement models with several possible replacement alternatives, Nav. Res. Logist. Q. 29 (1982), 483–493.

    Article  MATH  Google Scholar 

  13. Chand, S., Sethi, S. P. and Proth, J. M.: Existence of forecast horizon in undiscounted discrete-time lot size models, Oper. Res. 38(5) (1990), 884–892.

    MATH  MathSciNet  Google Scholar 

  14. Daskin, M. S., Hopp, W. J. and Medina, B.: Forecast horizons and dynamic facility location planning, Ann. Oper. Res. 28 (1992), 125–151.

    Article  Google Scholar 

  15. Federgruen, A. and Tzur, M.: Minimum forecast horizons and a new planning procedure for the general dynamic lot sizing model: nervousness revisited, Oper. Res. 42(3) (1994), 456–468.

    MATH  MathSciNet  Google Scholar 

  16. Federgruen, A. and Tzur, M.: Fast solution and detection of minimal forecast horizons in dynamic programs with a single indicator of the future: applications to dynamic lot-sizing models, Manag. Sci. 41 (1995), 874–893.

    Article  MATH  Google Scholar 

  17. Federgruen, A. and Tzur, M.: Detection of minimal forecast horizons in dynamic programs with multiple indicators of the future, Nav. Res. Logist. Q. 43 (1996), 169–189.

    Article  MATH  MathSciNet  Google Scholar 

  18. Grotschel, M., Junger, M. and Reinelt, G.: A cutting plane algorithm for the linear ordering problem, Oper. Res. 32 (1984), 1195–1230.

    MathSciNet  Google Scholar 

  19. Johnson, R. E. and McClain, J. O.: On further results on planning horizons in the production smoothing problem, Manag. Sci. 24 (1978), 1774–1776.

    Google Scholar 

  20. Kleindorfer, P. and Leiber, Z.: Algorithms and planning horizon results for production planning problems with separable costs, Oper. Res. 27 (1979), 875–887.

    Google Scholar 

  21. Lundin, R. A. and Morton, E.: Planning horizon for the dynamic lot size model: Zabel vs. Protective procedures and computational results, Oper. Res. 23(4) (1975), 711–734.

    MATH  MathSciNet  Google Scholar 

  22. Nair, S. K. and Hopp, W. J.: A model for equipment replacement due to technological obsolescence, Eur. J. Oper. Res. 63 (1992), 207–221.

    Article  MATH  Google Scholar 

  23. Nemhauser, G. L., Savelsbergh, M. W. P. and Sigismondi, G. S.: MINTO, a mixed INTeger optimizer, Oper. Res. Lett. 15 (1994), 47–58.

    Article  MathSciNet  MATH  Google Scholar 

  24. Padberg, M. W. and Rinaldi, G.: Optimization of a 532-city symmetric travelling salesman problem by branch and cut, Oper. Res. Lett. 6 (1987), 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  25. Rempala, R.: Forecast horizons in nonstationary Markov decision problems, Optimization 20 (1989), 853–857.

    Article  MATH  MathSciNet  Google Scholar 

  26. Rajagopalan, S.: Deterministic capacity expansion under deterioration, Manag. Sci. 38 (1992), 525–539.

    MATH  Google Scholar 

  27. Rajagopalan, S.: Capacity expansion with alternative technology choice, Eur. J. Oper. Res. 77 (1994), 392–403.

    Article  MATH  Google Scholar 

  28. Sethi, S.: A note on a planning horizon model of cash management, J. Financ. Quant. Anal. 6 (1971), 659–665.

    Article  Google Scholar 

  29. Sethi, S. P. and Bhaskaran, S.: Conditions for existence of decision horizons for discounted problems in a stochastic environment: a note, Oper. Res. Lett. 4(2) (1985), 61–64.

    Article  MATH  MathSciNet  Google Scholar 

  30. Wagner, H. M. and Whitin, T. M.: Dynamic version of the economic lot size model, Manag. Sci. 5(1) (1958), 89–96.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milind Dawande.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dawande, M., Gavirneni, S., Naranpanawe, S. et al. Computing Minimal Forecast Horizons:An Integer Programming Approach. J Math Model Algor 5, 239–258 (2006). https://doi.org/10.1007/s10852-005-9012-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-005-9012-3

Mathematics Subject Classification (2000):

Key words

Navigation