Skip to main content
Log in

Finding Edge-disjoint Paths in Networks: An Ant Colony Optimization Algorithm

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

One of the basic operations in communication networks consists in establishing routes for connection requests between physically separated network nodes. In many situations, either due to technical constraints or to quality-of-service and survivability requirements, it is required that no two routes interfere with each other. These requirements apply in particular to routing and admission control in large-scale, high-speed and optical networks. The same requirements also arise in a multitude of other applications such as real-time communications, vlsi design, scheduling, bin packing, and load balancing. This problem can be modeled as a combinatorial optimization problem as follows. Given a graph G representing a network topology, and a collection T={(s 1,t 1)...(s k ,t k )} of pairs of vertices in G representing connection request, the maximum edge-disjoint paths problem is an NP-hard problem that consists in determining the maximum number of pairs in T that can be routed in G by mutually edge-disjoint s i t i paths. We propose an ant colony optimization (aco) algorithm to solve this problem. aco algorithms are approximate algorithms that are inspired by the foraging behavior of real ants. The decentralized nature of these algorithms makes them suitable for the application to problems arising in large-scale environments. First, we propose a basic version of our algorithm in order to outline its main features. In a subsequent step we propose several extensions of the basic algorithm and we conduct an extensive parameter tuning in order to show the usefulness of those extensions. In comparison to a multi-start greedy approach, our algorithm generates in general solutions of higher quality in a shorter amount of time. In particular the run-time behaviour of our algorithm is one of its important advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EDP:

(maximum) edge-disjoint paths problem

SGA:

Simple Greedy Algorithm

MSGA:

Multi-start Greedy Algorithm

ACS:

Ant Colony System

ACO:

Ant Colony Optimization

References

  1. Aggarwal, A., Bar-Noy, A., Coppersmith, D., Ramaswami, R., Schieber, B., Sudan, M.: Efficient routing and scheduling algorithms for optical networks. In: 5th. ACM-SIAM Symposium on Discrete Algorithms (SODA’94), pp. 412–423. SIAM (1994)

  2. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. Journal of the ACM 45(3), 501–555 (1998)

    Article  MATH  Google Scholar 

  3. Aumann, Y., Rabani, Y.: Improved bounds for all-optical routing. In: 6th. ACM-SIAM Symposium on Discrete Algorithms (SODA’95), pp. 567–576. SIAM, Philadelphia, PA (1995)

    Google Scholar 

  4. Awerbuch, B., Gawlick, R., Leighton, F., Rabani, Y.: On-line admission control and circuit routing for high performance computing and communication. In: 35th IEEE Symposium on Foundations of Computer Science (FOCS’94), pp. 412–423. IEEE Computer Society Press, Los Alamitos, CA (1994)

    Google Scholar 

  5. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  Google Scholar 

  6. Baveja, A., Srinivasan, A.: Approximation algorithms for disjoint paths and related routing and packing problems. Math. Oper. Res. 25(2), 255–280 (2000)

    Article  MATH  Google Scholar 

  7. Blesa, M., Blum, C.: Ant colony optimization for the maximum edge-disjoint paths problem. In: 1st European Workshop on Evolutionary Computation in Communications, Networks, and Connected Systems (EvoCOMNET’04). Lecture Notes in Computer Science, vol. 3005, pp. 160–169. Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

  8. Blesa, M., Blum, C.: Finding edge-disjoint paths with artificial ant colonies. Technical Report LSI-05-13-R, Dept. Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya (2005)

  9. Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 34(2), 1161–1172 (2004)

    Article  Google Scholar 

  10. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

    Article  Google Scholar 

  11. Brandes, U., Wagner, D.: A linear time algorithm for the arc disjoint menger problem in planar directed graphs. Algorithmica 28(1), 16–36 (2000)

    Article  MATH  Google Scholar 

  12. Chekuri, C., Khanna, S.: Edge disjoint paths revisited. In: 14th annual ACM-SIAM Symposium on Discrete algorithms (SODA’03), pp. 628–637. SIAM, Philadelphia, PA (2003)

    Google Scholar 

  13. Costa, M.-C., Létocart, L., Roupin, F.: Multicut and integral multiflow: a survey. Eur. J. Oper. Res. 162(1), 55–69 (2005)

    Article  MATH  Google Scholar 

  14. Di Caro, G., Dorigo, M.: AntNet: distributed stigmergetic control for communications networks. J. Artif. Intell. Res. 9, 317–365 (1998)

    MATH  Google Scholar 

  15. Di Caro, G., Ducatelle, F., Gambardella, L.M.: AntHocNet: an adaptive nature-inspired algorithm for routing in mobile ad hoc networks. Eur. Trans. Telecommun. 16(5), 443–455 (2005)

    Article  Google Scholar 

  16. Dorigo, M.: Ottimizzazione, Apprendimento Automatico, ed Algoritmi basati su Metafora Naturale. PhD thesis, DEI, Politecnico di Milano, Milan, Italy (1992)

  17. Dorigo, M., Gambardella, L.: Ant Colony System: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)

    Article  Google Scholar 

  18. Dorigo, M., Maniezzo, V., Colorni, A.: Ant System: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cyber., Part B, Cybern. 26(1), 29–41 (1996)

    Article  Google Scholar 

  19. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge, MA (2004)

    MATH  Google Scholar 

  20. Erlebach, T.: Approximation algorithms and complexity results for path problems in trees of rings. In: 26th International Symposium on Mathematical Foundations of Computer Science (mfcs’01). Lecture Notes in Computer Science, vol. 2136, pp. 351–362. Springer, Berlin Heidelberg New York (2001)

    Google Scholar 

  21. Gambardella, L., Dorigo, M.: Solving symmetric and asymmetric TSPs by ant colonies. In: IEEE International Conference on Evolutionary Computation (icec’96), pp. 622–627. IEEE Computer Society Press, Los Alamitos, CA (1996)

    Chapter  Google Scholar 

  22. Garg, N., Vazirani, V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)

    Article  MATH  Google Scholar 

  23. Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, B., Yannakakis, M.: Near-optimal hardness results and approximation algorithms for edge-disjoint paths and related problems. J. Comput. Syst. Sci. 67b(3), 473–496 (2003)

    Article  Google Scholar 

  24. Hromkovič, J., Klasing, R., Stöhr, E., Wagener, H.: Gossiping in vertex-disjoing paths mode in d-dimensional grids and planar graphs. In: 1st Annual European Symposium on Algorithms (ESA’93). Lecture Notes in Computer Science, vol. 726, pp. 200–211. Springer, Berlin Heidelberg New York (1993)

    Google Scholar 

  25. Karp, R.: Compexity of computer computations, Chapter Reducibility Among Combinatorial Problems, pp. 85–103. Plenum, New York (1972)

    Google Scholar 

  26. Kleinberg, J.: Approximation algorithms for disjoint paths problems. PhD thesis, MIT Press, Cambridge, USA (1996)

  27. Kolliopoulos, S., Stein, C.: Approximating disjoint-path problems using packing integer programs. Math. Program. 99(1), 63–87 (2004)

    Article  MATH  Google Scholar 

  28. Kolman, P., Scheideler, C.: Simple on-line algorithms for the maximum disjoint paths problem. In: 13th ACM Symposium on Parallel Algorithms and Architectures (SPAA’01), pp. 38–47. ACM Press, New York (2001)

    Google Scholar 

  29. Kolman, P., Scheideler, C.: Improved bounds for the unsplittable flow problem. In: 13th annual ACM-SIAM symposium on Discrete algorithms (SODA’02), pp. 184–193. SIAM, Philadelphia, PA (2002)

    Google Scholar 

  30. Kramer, M., van Leeuwen, J.: Advances in computing research. In: VLSI theory. The complexity of wire-routing and finding minimum area layouts for arbitrary VLSI circuits, vol. 2, pp. 129–146. JAI Press, Greenwhich, CT (1984)

    Google Scholar 

  31. Ma, B., Wang, L.: On the inapproximability of disjoint paths and minimum steiner forest with bandwidth constraints. J. Comput. Syst. Sci. 60(1), 1–12 (2000)

    Article  MATH  Google Scholar 

  32. Marx, D.: Eulerian disjoint paths problem in grid graphs is NP-complete. Discrete Appl. Math. 143(1–3), 336–341 (2004)

    Article  MATH  Google Scholar 

  33. Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE: Boston University Representative Internet Topoloy Generator. http://cs-pub.bu.edu/brite/index.htm (2001)

  34. Middendorf, M., Pfeiffer, F.: On the complexity of the disjoint path problem. Combinatorica 13(1), 97–107 (1993)

    Article  MATH  Google Scholar 

  35. Nishizeki, T., Vygen, J., Zhou, X.: The edge-disjoint paths problem is np-complete for series-parallel graphs. Discrete Appl. Math. 115(1–3), 177–186 (2001)

    Article  MATH  Google Scholar 

  36. Nowé, A., Verbeeck, K., Vrancx, P.: Multi-type ant colony: the edge disjoint paths problem. In: 4th International Workshop on Ant Colony Optimization and Swarm Intelligence (ANTS’04). Lecture Notes in Computer Science, vol. 3172, pp. 202–213. Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

  37. Raghavan, P., Upfal, E.: Efficient all-optical routing. In: 26th. Annual ACM Symposium on Theory of Computing (stoc’94), pp. 134–143. ACM Press, New York (1994)

    Google Scholar 

  38. Ripphausen-Lipa, H., Wagner, D., Weihe, K.: The vertex-disjoint Menger problem in planar graphs. SIAM J. Comput. 26(2), 331–349 (1997)

    Article  MATH  Google Scholar 

  39. Sidhu, D., Nair, R., Abdallah, S.: Finding disjoint paths in networks. ACM SIGCOMM Computer Communication Review 21(4), 43–51 (1991)

    Article  Google Scholar 

  40. Srinivasan, A.: Improved approximations for edge-disjoint paths, unsplittable flow and related routing problems. In: 38th Annual IEEE Symposium on Foundations of Computer Science (focs’97), pp. 416–425. IEEE Computer Society Press, Los Alamitos, CA (1997)

    Chapter  Google Scholar 

  41. Stützle, T., Hoos, H.: \(\mathcal {MAX-MIN}\) ant system. Future Gener. Comput. Syst. 16(8), 889–914 (2000)

    Article  Google Scholar 

  42. Varadarajan, K., Venkataraman, G.: Graph decomposition and a greedy algorithm for edge-disjoint paths. In: 15th annual ACM-SIAM Symposium on Discrete Algorithms (SODA’04), pp. 379–380. SIAM, Philadelphia, PA (2004)

    Google Scholar 

  43. Vygen, J.: NP-completeness of some edge-disjoint paths problems. Discrete Appl. Math. 61(1), 83–90 (1995)

    Article  MATH  Google Scholar 

  44. Waxman, B.: Routing of multipoint connections. IEEE J. Sel. Areas Commun. 6(9), 1671–1622 (1988)

    Article  Google Scholar 

  45. Weihe, K.: Edge-disjoint (st)-paths in undirected planar graphs in linear time. J. Algorithms 23(1), 121–138 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Blum.

Additional information

Work partially supported by the fet Integrated Project 15964 (aeolus), and by the Spanish cicyt projects tin2005-09198-c02-02 (asce), tin2005-08818-c04-02 (oplink) and tin2005-25859-e. C. Blum also acknowledges support by the ramón y cajal postdoctoral program of the Spanish Ministry of Science and Technology. Preliminary versions of this work were presented at the 1st European Workshop on Evolutionary Computation in Communications, Networks, and Connected Systems, lncs 3005:160–169, Springer 2004, and in the 9th Intl. Workshop on Nature Inspired Distributed Computing, p. 239, ieee 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blesa, M.J., Blum, C. Finding Edge-disjoint Paths in Networks: An Ant Colony Optimization Algorithm. J Math Model Algor 6, 361–391 (2007). https://doi.org/10.1007/s10852-007-9060-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-007-9060-y

Keywords

Mathematics Subject Classifications (2000)

Navigation