Abstract
The graph b-coloring is an interesting technique that can be applied to various domains. The proper b-coloring problem is the assignment of colors (classes) to the vertices of one graph so that no two adjacent vertices have the same color, and for each color class there exists at least one dominating vertex which is adjacent (dissimilar) to all other color classes. This paper presents a new graph b-coloring framework for clustering heterogeneous objects into groups. A number of cluster validity indices are also reviewed. Such indices can be used for automatically determining the optimal partition. The proposed approach has interesting properties and gives good results on benchmark data set as well as on real medical data set.
Similar content being viewed by others
References
Ichino, M., Yaguchi, H.: General minkowsky metrics for mixed feature type data analysis. IEEE Trans. Syst. Man Cybern. 24, 698–708 (1994)
Malerba, D., Esposito, F., Gioviale, V., Tamma, V.: Comparing dissimilarity measures in symbolic data analysis. In: Joint Conferences on New Techniques and Technologies for Statistics and Exchange of Technology and Know-how, pp. 473–481, Hersonissos, 18–22 June 2001
Jain, A.K., Murty, M.N., Flynn, T.P.J.: Data clustering: a review. ACM Comput. Surv. 31, 264–323 (1999)
Guha, S., Rastogi, R., Shim, K.: Cure: an efficient clustering algorithm for large databases. In: Proceedings of the ACM SIGMOD Conference, pp. 73–84, Seattle, 2–4 June 1998
Karypis, G., Han, E., Chameleon, K.V.: A hierarchical clustering algorithm using dynamic modeling. IEEE Comput. 32(8), 68–75 (1999)
Ng, R., Han, J.: Clarans: a method for clustering objects for spatial data mining. IEEE Trans. Knowl. Data Eng. 14(5), 1003–1016 (2002)
Hartigan, J., Wong, M.: Algorithm as136: a k-means clustering algorithm. J. Appl. Stat. 28, 100–108 (1979)
Auguston, J.G., Minker, J.: An analysis of some graph theoretical clustering techniques. J. Assoc. Comput. Mach. 17(4), 571–588 (1970)
Zahn, C.T.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. Comput. 20, 68–86 (1971)
Matula, D.W.: Cluster analysis via graph theoretic techniques. In: Mullin, R.C., Reid, K.B., Roselle, D.P. (eds.) The Louisiana Conference on Combinatorics, Graph Theory, and Computing, pp. 199–212. Louisiana State University, Baton Rouge (1970)
Matula, D.W.: K-components, clusters, and slicings in graphs. SIAM J. Appl. Math. 22, 459–480 (1972)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)
Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1101–1113 (1993)
Gotlieb, C.C., Kumar, S.: Semantic clustering of index terms. J. Assoc. Comput. Mach. 15(4), 493–513 (1968)
Guenoche, A., Hansen, P., Jaumard, B.: Efficient algorithms for divisive hierarchical clustering with the diameter criterion. J. Classif. 8, 5–30 (1991)
Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. Inf. Process. Lett. 76, 175–181 (2000)
Gomory, R.E., Hu, T.C.: Multy-terminal network flows. SIAM J. Appl. Math. 9, 551–560 (1961)
Kuhns, J.L.: Mathematical analysis of correlation clusters. Word correlation and automatic indexing, 2 (1959)
Hansen, P., Delattre, M.: Complete-link cluster analysis by graph coloring. J. Am. Stat. Assoc. 73, 397–403 (1978)
Elghazel, H., Kheddouci, H., Deslandres, V., Dussauchoy, A.: A partially dynamic clustering algorithm for data insertion and removal. In: Corruble, V., Takeda, M., Suzuki, E. (eds.) DS2007 (Springer Verlag LNAI 4755), pp. 78–90. Springer, New York (2007)
Irving, W., Manlov, D.F.: The b-chromatic number of a graph. Discrete Appl. Math. 91, 127–141 (1999)
Effantin, B., Kheddouci, H.: The b-chromatic number of some power graphs. Discret. Math. Theor. Comput. Sci. 6(1), 45–54 (2003)
Kouider, M., Maheo, M.: Some bounds for the b-chromatic number of a graph. Discret. Math. 256, 267–277 (2002)
Effantin, B., Kheddouci, H.: A distributed algorithm for a b-coloring of a graph. In: ISPA2006 (Springer Verlag LNCS 4330), pp. 430–438. Springer, New York (2006)
Kheddouci, H.: Placement et paramètres de graphes. Mémoire HDR RC 20586, University of Bourgogne (2003)
Elghazel, H., Deslandres, V., Hacid, M.S., Dussauchoy, A., Kheddouci, H.: A new clustering approach for symbolic data and its validation: application to the healthcare data. In: Esposito, F., Ras, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS2006 (Springer Verlag LNAI 4203), pp. 473–482. Springer, New York (2006)
Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. IEEE Trans. Syst. Man Cybern. 28(3), 301–315 (1998)
Kalyani, M., Sushmita, M.: Clustering and its validation in a symbolic framework. Pattern Recogn. Lett. 24(14), 2367–2376 (2003)
Blake, C.L., Merz, C.J.: Uci Repository of Machine Learning Databases. University of California Irvine, Irvine (1998)
Guha, S., Rastogi, R., Shim, K., Rock: A robust clustering algorithm for categorical attributes. Inf. Syst. 25(5), 345–366 (2000)
Biswas, G., Weinberg, J.B., Fisher, D.H.: Iterate: a conceptual clustering algorithm for data mining. IEEE Trans. Syst. Man Cybern. 28(C), 219–230 (1998)
Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846–850 (1971)
Rote, G.: Computing the minimum Hausdorff distance between two point sets on a line under translation. Inf. Process. Lett. 38, 123–127 (1991)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Elghazel, H., Kheddouci, H., Deslandres, V. et al. A Graph b-coloring Framework for Data Clustering. J Math Model Algor 7, 389–423 (2008). https://doi.org/10.1007/s10852-008-9093-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10852-008-9093-x