Skip to main content

Advertisement

Log in

A Graph b-coloring Framework for Data Clustering

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

The graph b-coloring is an interesting technique that can be applied to various domains. The proper b-coloring problem is the assignment of colors (classes) to the vertices of one graph so that no two adjacent vertices have the same color, and for each color class there exists at least one dominating vertex which is adjacent (dissimilar) to all other color classes. This paper presents a new graph b-coloring framework for clustering heterogeneous objects into groups. A number of cluster validity indices are also reviewed. Such indices can be used for automatically determining the optimal partition. The proposed approach has interesting properties and gives good results on benchmark data set as well as on real medical data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ichino, M., Yaguchi, H.: General minkowsky metrics for mixed feature type data analysis. IEEE Trans. Syst. Man Cybern. 24, 698–708 (1994)

    Article  MathSciNet  Google Scholar 

  2. Malerba, D., Esposito, F., Gioviale, V., Tamma, V.: Comparing dissimilarity measures in symbolic data analysis. In: Joint Conferences on New Techniques and Technologies for Statistics and Exchange of Technology and Know-how, pp. 473–481, Hersonissos, 18–22 June 2001

  3. Jain, A.K., Murty, M.N., Flynn, T.P.J.: Data clustering: a review. ACM Comput. Surv. 31, 264–323 (1999)

    Article  Google Scholar 

  4. Guha, S., Rastogi, R., Shim, K.: Cure: an efficient clustering algorithm for large databases. In: Proceedings of the ACM SIGMOD Conference, pp. 73–84, Seattle, 2–4 June 1998

  5. Karypis, G., Han, E., Chameleon, K.V.: A hierarchical clustering algorithm using dynamic modeling. IEEE Comput. 32(8), 68–75 (1999)

    Google Scholar 

  6. Ng, R., Han, J.: Clarans: a method for clustering objects for spatial data mining. IEEE Trans. Knowl. Data Eng. 14(5), 1003–1016 (2002)

    Article  Google Scholar 

  7. Hartigan, J., Wong, M.: Algorithm as136: a k-means clustering algorithm. J. Appl. Stat. 28, 100–108 (1979)

    Article  MATH  Google Scholar 

  8. Auguston, J.G., Minker, J.: An analysis of some graph theoretical clustering techniques. J. Assoc. Comput. Mach. 17(4), 571–588 (1970)

    Google Scholar 

  9. Zahn, C.T.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. Comput. 20, 68–86 (1971)

    Article  MATH  Google Scholar 

  10. Matula, D.W.: Cluster analysis via graph theoretic techniques. In: Mullin, R.C., Reid, K.B., Roselle, D.P. (eds.) The Louisiana Conference on Combinatorics, Graph Theory, and Computing, pp. 199–212. Louisiana State University, Baton Rouge (1970)

    Google Scholar 

  11. Matula, D.W.: K-components, clusters, and slicings in graphs. SIAM J. Appl. Math. 22, 459–480 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  12. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  13. Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1101–1113 (1993)

    Article  Google Scholar 

  14. Gotlieb, C.C., Kumar, S.: Semantic clustering of index terms. J. Assoc. Comput. Mach. 15(4), 493–513 (1968)

    Google Scholar 

  15. Guenoche, A., Hansen, P., Jaumard, B.: Efficient algorithms for divisive hierarchical clustering with the diameter criterion. J. Classif. 8, 5–30 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. Inf. Process. Lett. 76, 175–181 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gomory, R.E., Hu, T.C.: Multy-terminal network flows. SIAM J. Appl. Math. 9, 551–560 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kuhns, J.L.: Mathematical analysis of correlation clusters. Word correlation and automatic indexing, 2 (1959)

  19. Hansen, P., Delattre, M.: Complete-link cluster analysis by graph coloring. J. Am. Stat. Assoc. 73, 397–403 (1978)

    Article  Google Scholar 

  20. Elghazel, H., Kheddouci, H., Deslandres, V., Dussauchoy, A.: A partially dynamic clustering algorithm for data insertion and removal. In: Corruble, V., Takeda, M., Suzuki, E. (eds.) DS2007 (Springer Verlag LNAI 4755), pp. 78–90. Springer, New York (2007)

    Google Scholar 

  21. Irving, W., Manlov, D.F.: The b-chromatic number of a graph. Discrete Appl. Math. 91, 127–141 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Effantin, B., Kheddouci, H.: The b-chromatic number of some power graphs. Discret. Math. Theor. Comput. Sci. 6(1), 45–54 (2003)

    MATH  MathSciNet  Google Scholar 

  23. Kouider, M., Maheo, M.: Some bounds for the b-chromatic number of a graph. Discret. Math. 256, 267–277 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Effantin, B., Kheddouci, H.: A distributed algorithm for a b-coloring of a graph. In: ISPA2006 (Springer Verlag LNCS 4330), pp. 430–438. Springer, New York (2006)

    Google Scholar 

  25. Kheddouci, H.: Placement et paramètres de graphes. Mémoire HDR RC 20586, University of Bourgogne (2003)

  26. Elghazel, H., Deslandres, V., Hacid, M.S., Dussauchoy, A., Kheddouci, H.: A new clustering approach for symbolic data and its validation: application to the healthcare data. In: Esposito, F., Ras, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS2006 (Springer Verlag LNAI 4203), pp. 473–482. Springer, New York (2006)

    Google Scholar 

  27. Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. IEEE Trans. Syst. Man Cybern. 28(3), 301–315 (1998)

    Article  Google Scholar 

  28. Kalyani, M., Sushmita, M.: Clustering and its validation in a symbolic framework. Pattern Recogn. Lett. 24(14), 2367–2376 (2003)

    Article  MATH  Google Scholar 

  29. Blake, C.L., Merz, C.J.: Uci Repository of Machine Learning Databases. University of California Irvine, Irvine (1998)

    Google Scholar 

  30. Guha, S., Rastogi, R., Shim, K., Rock: A robust clustering algorithm for categorical attributes. Inf. Syst. 25(5), 345–366 (2000)

    Article  Google Scholar 

  31. Biswas, G., Weinberg, J.B., Fisher, D.H.: Iterate: a conceptual clustering algorithm for data mining. IEEE Trans. Syst. Man Cybern. 28(C), 219–230 (1998)

    Google Scholar 

  32. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846–850 (1971)

    Article  Google Scholar 

  33. Rote, G.: Computing the minimum Hausdorff distance between two point sets on a line under translation. Inf. Process. Lett. 38, 123–127 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haytham Elghazel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elghazel, H., Kheddouci, H., Deslandres, V. et al. A Graph b-coloring Framework for Data Clustering. J Math Model Algor 7, 389–423 (2008). https://doi.org/10.1007/s10852-008-9093-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-008-9093-x

Keywords

Navigation