Skip to main content
Log in

Multi-Objective Biclustering: When Non-dominated Solutions are not Enough

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

The biclustering technique was developed to avoid some of the drawbacks presented by standard clustering techniques, such as their impossibility of finding correlating data under a subset of features, and, consequently, to allow the extraction of more accurate information from datasets. Given that biclustering requires the optimization of at least two conflicting objectives (residue and volume) and that multiple independent solutions are desirable as the outcome, a few multi-objective evolutionary algorithms for biclustering were proposed in the literature. However, these algorithms only focus their search in the generation of a global set of non-dominated biclusters, which may be insufficient for most of the problems as the coverage of the dataset can be compromised. In order to overcome such problem, a multi-objective artificial immune system capable of performing a multipopulation search, named MOM-aiNet, was proposed. In this work, the MOM-aiNet algorithm will be described in detail, and an extensive set of experimental comparisons will be performed, with the obtained results of MOM-aiNet being confronted with those produced by the popular CC algorithm, by another immune-inspired approach for biclustering (BIC-aiNet), and by the multi-objective approach for biclustering proposed by Mitra & Banka.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2006)

    Google Scholar 

  2. de França, F.O., Bezerra, G., Von Zuben, F.J.: New perspectives for the biclustering problem. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp. 753–760. IEEE, Vancouver (2006)

  3. Parmigiani, G., Garett, E.S., Irizarry, R.A., Zeger, S.L. (eds.): The Analysis of Gene Expression Data. Springer, New York (2003)

    MATH  Google Scholar 

  4. Herlocker, J., Konstan, J., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: Proceedings of the 1999 Conference on Research and Development in Information Retrieval, pp. 230–237, Berkeley, 15–19 August 1999

  5. Feldman, R., Sanger, J.: The Text Mining Handbook. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  6. Hartigan, J.A.: Direct clustering of a data matrix. J. Am. Stat. Assoc. (JASA) 67(337), 123–129 (1972)

    Article  Google Scholar 

  7. Mirkin, B.: Mathematical Classification and Clustering. Nonconvex Optimization and Its Applications. Springer, New York (1996)

    Google Scholar 

  8. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proc. of the 8th Int. Conf. on Intelligent Systems for Molecular Biology, pp. 93–103, La Jolla, 19–23 August 2000

  9. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  10. Mitra, S., Banka, H.: Multi-objective evolutionary biclustering of gene expression data. Pattern Recogn. 39, 2464–2477 (2006)

    Article  MATH  Google Scholar 

  11. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  12. Mitra, S., Banka, H., Pal, S.K.: A MOE framework for biclustering of microarray data. In: Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), pp. 1154 – 1157, Hong Kong, 20–24 August 2006

  13. Divina, F., Aguilar–Ruiz, J.S.: A multi-objective approach to discover biclusters in microarray data. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’07), pp. 385–392, London, 7–11 July 2007

  14. Giráldez, R., Divina, F., Pontes, B., Aguilar–Ruiz, J.S.: Evolutionary search of biclusters by minimal intrafluctuation. In: Proceedings of the IEEE International Fuzzy Systems Conference (FUZZ–IEEE 2007), pp. 1–6. IEEE, London (2007)

  15. Maulik, U., Mukhopadhyay, A., Bandyopadhyay, S., Zhang, M.Q., Zhang, X.: Multiobjective fuzzy biclustering in microarray data: method and a new performance measure. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation (CEC 2008), pp. 1536–1543. IEEE, Hong Kong (2008)

  16. Krishnapuram, R., Joshi, A., Yi, L.: A fuzzy relative of the k–medoids algorithm with application to document and snippet clustering. In: Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’99), pp. 1281–1286. IEEE, Seoul (1999)

  17. Coelho, G.P., de França, F.O., Von Zuben, F.J.: A multi-objective multipopulation approach for biclustering. In: Bentley, P.J., Lee, D., Jung, S. (eds.) Artificial Immune Systems, Proc. of the 7th International Conference on Artificial Immune Systems (ICARIS), Lecture Notes in Computer Science, vol. 5132, pp. 71–82, Phuket, 10–13 August 2008

  18. de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, New York (2002)

    MATH  Google Scholar 

  19. Castro, P.A.D., de França, F.O., Ferreira, H.M., Von Zuben, F.J.: Applying biclustering to text mining: an immune-inspired approach. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds.) Artificial Immune Systems, Proc. of the 6th International Conference on Artificial Immune Systems (ICARIS), Lecture Notes in Computer Science, vol. 4628, pp. 83–94, Santos, 26–29 August 2007

  20. Agrawal, R., Gehrke, J., Gunopulus, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proc. of the ACM/SIGMOD Int. Conference on Management of Data, pp. 94–105, Seattle, 2–4 June 1998

  21. Dhillon, I.S.: Co-clustering documents and words using bipartite spectral graph partitioning. In: Proc. of the 7th Int. Con. on Knowledge Discovery and Data Mining, pp. 269–274, San Francisco, 26–29 August 2001

  22. Castro, P.A.D., de França, F.O., Ferreira, H.M., Von Zuben, F.J.: Applying biclustering to perform collaborative filtering. In: Proc. of the 7th International Conference on Intelligent Systems Design and Applications, pp. 421–426, Rio de Janeiro, 22–24 October 2007

  23. Castro, P.A.D., de França, F.O., Ferreira, H.M., Von Zuben, F.J.: Evaluating the performance of a biclustering algorithm applied to collaborative filtering: a comparative analysis. In: Proc. of the 7th International Conference on Hybrid Intelligent Systems, pp. 65–70, Kaiserslautern, 17–19 September 2007

  24. Symeonidis, P., Nanopoulos, A., Papadopoulos, A., Manolopoulos, Y.: Nearest-biclusters collaborative filtering with constant values. In: Advances in Web Mining and Web Usage Analysis, Lecture Notes in Computer Science, vol. 4811, pp. 36–55. Springer, Philadelphia (2007)

    Chapter  Google Scholar 

  25. Tang, C., Zhang, L., Zhang, I., Ramanathan, M.: Interrelated two-way clustering: an unsupervised approach for gene expression data analysis. In: Proc. of the 2nd IEEE Int. Symposium on Bioinformatics and Bioengineering, pp. 41–48. IEEE, Piscataway (2001)

    Chapter  Google Scholar 

  26. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE Trans. Comput. Biol. Bioinformatics 1(1), 24–45 (2004)

    Article  Google Scholar 

  27. Edgeworth, F.Y.: Mathematical Physics. P. Keagan, London (1881)

    Google Scholar 

  28. Pareto, V.: Cours D’Economie Politique. F. Rouge, Lausanne (1896)

    Google Scholar 

  29. Burnet, F.M.: Clonal selection and after. In: Bell, G.I., Perelson, A.S., Pimgley, G.H. Jr (eds.) Theoretical Immunology, pp. 63–85. Marcel Dekker, New York (1978)

    Google Scholar 

  30. Jerne, N.K.: Towards a network theory of the immune system. Ann. Immunol. Inst. Pasteur 125C, 373–389 (1974)

    Google Scholar 

  31. de Castro, L.N., Von Zuben, F.J.: Learning and optimization using the Clonal selection principle. IEEE Trans. Evol. Comput. 6(3), 239–251 (2002)

    Article  Google Scholar 

  32. de Castro, L.N., Von Zuben, F.J.: aiNet: an artificial immune network for data analysis. In: Abbass, H.A., Sarker, R.A., Newton, C.S. (eds.) Data mining: a heuristic approach, pp. 231–259. Idea Group, Harrisburg (2001)

  33. Coelho, G.P., Von Zuben, F.J.: omni-aiNet: an immune-inspired approach for omni optimization. In: Bersini, H., Carneiro, J. (eds.) Artificial Immune Systems, Proc. of the 5th International Conference on Artificial Immune Systems (ICARIS), Lecture Notes in Computer Science, vol. 4163, pp. 294–308. Oeiras, Portugal (2006)

  34. Cho, R., Campbell, M., Winzeler, E., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T., Gabrielian, A., Landsman, D., Lockhart, D., Davis, R.: A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65–73 (1998)

    Article  Google Scholar 

  35. Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X., Powell, J.I., Yang, L., Marti, G.E., Moore, T., Hudson J., Jr., Lu, L., Lewis, D.B., Tibshirani, R., Sherlock, G., Chan, W.C., Greiner, T.C., Weisenburger, D.D., Armitage, J.O., Warnke, R., Levy, R., Wilson, W., Grever, M.R., Byrd, J.C., Botstein, D., Brown, P.O., Staudt, L.M.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–510 (2000)

    Article  Google Scholar 

  36. Snedecor, G.S., Cochran, W.G.: Statistical Methods. Iowa University Press, Iowa (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Palermo Coelho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coelho, G.P., de França, F.O. & Von Zuben, F.J. Multi-Objective Biclustering: When Non-dominated Solutions are not Enough. J Math Model Algor 8, 175–202 (2009). https://doi.org/10.1007/s10852-009-9102-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-009-9102-8

Keywords

Navigation