Skip to main content
Log in

Some Observations on the TLM Numerical Solution of the Laplace Equation

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

This paper describes progress on the TLM modelling of the Laplace equation, in particular, how the rate of convergence is influenced by the choice of scattering parameter for a particular discretisation. The hypothesis that optimum convergence is achieved when the real and imaginary parts for the lowest harmonic in a Fourier solution cancel appears to be upheld. The Fourier solution for the problem has been advanced by a better understanding of the nature of the initial excitation. The relationship between the form of the initial condition used in this and many other numerical solutions of the Laplace equation and oscillatory behavior in the results is given a firmer theoretical basis. A correlation between TLM numerical results and those obtained from matrix spectral radius calculations has confirmed much previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Southwell, R.V.: Relaxation Methods in Engineering Science. Oxford University Press, Oxford, UK (1940)

    Google Scholar 

  2. Dusinberre, G.M.: Numerical Analysis of Heat Flow, pp. 121–125. McGraw-Hill, New York (1949)

    Google Scholar 

  3. Ames, W.F.: Numerical Methods for Partial Differential Equations. Academic, New York (1977)

    MATH  Google Scholar 

  4. Morton, K.W., Mayers, D.F.: Numerical Solution of Partial Differential Equations. Cambridge University Press, Cambridge, UK (2005)

    MATH  Google Scholar 

  5. Christopoulos, C.: The Transmission Line Modelling Method. IEEE, Piscataway, NJ (1995)

    Google Scholar 

  6. de Cogan, D.: Transmission Line Matrix (TLM) Techniques for Diffusion Applications. Gordon and Breach, Reading, UK (1998)

    MATH  Google Scholar 

  7. Smith, A.: Transmission line matrix modelling, optimisation and application to adsorption phenomena. B.Eng. thesis, Nottingham University (1988)

  8. Al-Zeben, M.Y., Saleh, A.H.M., Al-Omar, M.A.: TLM modelling of diffusion, drift and recombination of charge carriers in semiconductors. Int. J. Numer. Model. 5, 219–225 (1992)

    Article  Google Scholar 

  9. de Cogan, D.: The relationship between parabolic and hyperbolic transmission line matrix models for heat-flow. Microelectron. J. 30, 1093–1097 (1999)

    Article  Google Scholar 

  10. Johns, P.B.: A simple, explicit and unconditionally stable routine for the solution of the diffusion equation. Int. J. Numer. Methods Eng. 11, 1307–1328 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  11. de Cogan, D.: Propagation analysis for thermal modelling. IEEE Trans. Compon. Packaging Manuf. Technol. Part A 21, 418–423 (1998)

    Article  Google Scholar 

  12. de Cogan, D., Chakrabarti, A., Harvey, R.W.: TLM algorithms for Laplace and Poisson fields in semiconductor transport. SPIE Proc. 2373, 198–206 (1995)

    Article  Google Scholar 

  13. de Cogan, D., O’Connor, W.J., Gui, X.: Accelerated convergence in TLM algorithms for the Laplace equation. Int. J. Numer. Methods Eng. 63, 122–138 (2005)

    Article  MATH  Google Scholar 

  14. Frankel, S.: Convergence rates of iterative treatments of partial differential equations. Math. Tables Other Aids Comput. 4, 65–75 (1950)

    Article  MathSciNet  Google Scholar 

  15. de Cogan, D., O’Connor, W.J., Pulko, S.H.: Transmission Line Matrix (TLM) in Computational Mechanics (See Chapter 2 and 3). CRC, Boca Raton, FL (2006)

    Google Scholar 

  16. Gui, X., de Cogan, D.: Boundary conditions in TLM diffusion modeling. Int. J. Numer. Model. 19, 69–82 (2006)

    Article  MATH  Google Scholar 

  17. Flaherty, J.E.: Rensselaer polytechnic institute units CSCI-6840/MATH-6840 “partial differential equations” lecture 9. http://www.cs.rpi.edu/~flaherje/

  18. Flaherty, J.E.: Rensselaer polytechnic institute units CSCI-6840/MATH-6840 “partial differential equations” lecture 4. http://www.cs.rpi.edu/~flaherje/

  19. Chardaire, P., de Cogan, D.: Distribution in TLM models for diffusion (part I: one-dimensional treatment). Int. J. Numer. Model. 15, 317–327 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. de Cogan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Cogan, D., Gui, X. & Rak, M. Some Observations on the TLM Numerical Solution of the Laplace Equation. J Math Model Algor 8, 363–385 (2009). https://doi.org/10.1007/s10852-009-9112-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-009-9112-6

Keywords

Mathematics Subject Classifications (2000)

Navigation