Abstract
This article addresses a generalization of the capacitated lot-size problem (CLSP) as well as the profit maximization capacitated lot-size problem (PCLSP) considering joint price inventory decisions. This problem maximizes profit over a discrete set of prices subject to resource limitations. We propose a heuristic based on Lagrangian relaxation to resolve the problem, especially aiming for large scale cases. Results of experimentation exhibit the major importance of the capacity constraint. When this one is weak, our heuristic performs particularly well, moreover the numbers of possible prices does not really impact the results.
Similar content being viewed by others
References
Adida, E., Perakis, G.: A robust optimization approach to dynamic pricing and inventory control with no backorders. Math. Program. 107(1), 97–129 (2006)
Bitran, G.R., Yanasse, H.H.: Computational complexity of the capacitated lot size problem. Manage. Sci. 28, 1174–1186 (1982)
Bonsall, P., Shires, J., Maule, J., Matthews, B., Beale, J.: Responses to complex pricing signals: theory, evidence and implications for road pricing. Transp. Res. Part A, Policy Pract. 41(7), 672–683 (2007)
Brahimi, N., Dauzere-Peres, S., Najid, N.M., Nordli, A.: Single item lot sizing problems. Eur. J. Oper. Res. 168(1), 1–16 (2006). doi:10.1016/j.ejor.2004.01.054. URL: http://www.sciencedirect.com/science/article/B6VCT-4D2MXXY-2/2/fe871b498441d3c1f6974f006f51311b
Chen, W.H., Thizy, J.H.: Analysis of relaxations for the multi-item capacitated lot-sizing problem. Ann. Oper. Res. 26, 29–72 (1990)
Diaby, M., Bahl, H., Karwan, M., Zionts, S.: A Lagrangean relaxation approach for very-large-scale capacitated lot-sizing. Manage. Sci. 38(9), 1329–1340 (1992). doi:10.1287/mnsc.38.9.1329
Discréton, S.: Le service public à l’épreuve de la tarification: l’exemple de la SNCF. La Revue Adminis. 48(288), 639–645 (1996)
Elmaghraby, W., Keskinocak, P.: Dynamic pricing in the presence of inventory considerations: research overview, current practices, and future directions. Manage. Sci. 49(10), 1287–1309 (2003)
Fleischmann, M., Hall, J., Pyke, D.: Smart pricing: linking pricing decisions with operational insights. ERIM Report Series (2003)
Gilbert, S.M.: Coordination of pricing and multi-period production for constant priced goods. Eur. J. Oper. Res. 114, 330–337 (1999). doi:10.1016/S0377-2217(98)00042-3
Gilbert, S.M.: Coordination of pricing and multiple-period production across multiple constant priced goods. Manage. Sci. 46, 1602–1616 (2000)
González-Ramírez, R.G., Smith, N.R., Askin, R.G.: A heuristic approach for a multi-product capacitated lot-sizing problem with pricing. Int. J. Prod. Res. 49(4), 1173–1196 (2011)
Hanks, R., Cross, R., Noland, R.: Discounting in the hotel industry: a new approach. Cornell Hotel Restaur. Adm. Q. 33(1), 15–23 (1992)
Haugen, K.K., Lanquepin-Chesnais, G., Olstad, A.: A fast Lagrangian heuristic for large-scale Capacitated Lot-size Problems with restricted cost structures. Kybernetika (2012, in press)
Haugen, K.K., Lokketangen, A., Woodruff, D.L.: Progressive hedging as a meta-heuristic applied to stochastic lot-sizing. Eur. J. Oper. Res. 132(1), 116–122 (2001)
Haugen, K.K., Olstad, A., Pettersen, B.I.: Solving large-scale profit maximization capacitated lot-size problems by heuristic methods. J. Math. Model. Algor. 6(1), 135 (2007). doi:10.1007/s10852-006-9053-2
Haugen, K.K., Olstad, A., Pettersen, B.I.: The profit maximizing capacitated lot-size (PCLSP) problem. Eur. J. Oper. Res. 176, 165–176 (2007). doi:10.1016/j.ejor.2005.08.001
Helgason, T., Wallace, S.W.: Approximate scenario solutions in the progressive hedging algorithm. Ann. Oper. Res. 31, 425–444 (1991)
van Den Heuvel, W., Wagelmans, A.P.M.: A polynomial time algorithm for a deterministic joint pricing and inventory model. Eur. J. Oper. Res. 170, 463–480 (2006). doi:10.1016/j.ejor.2004.06.027
Jans, R., Degraeve, Z.: Meta-heuristics for dynamic lot sizing: a review and comparison of solution approaches. Eur. J. Oper. Res. 177(3), 1855–1875 (2007)
Kapuscinski, R., Zhang, R.Q., Carbonneau, P., Moore, R., Reeves, B.: Inventory decisions in Dell’s supply chain. Interfaces 34(3), 191–205 (2004) doi:10.1287/inte.1030.0068
Karimi, B., Fatemi Ghomi, S.M.T., Wilson, J.M.: The capacitated lot sizing problem: a review of models and algorithms. Omega 31, 365–378 (2003). doi:10.1016/S0305-0483(03)00059-8
Kimes, S., Wirtz, J.: Has revenue management become acceptable? J. Serv. Res. 6(2), 125 (2003)
Kimes, S.E.: Perceived fairness of yield management. Cornell Hotel Restaur. Adm. Q. 35(1), 22–29 (1994)
Kunreuther, H., Schrage, L.: Joint pricing and inventory decisions for constant priced items. Manage. Sci. 19(7), 732–738 (1973)
Manne, A.S.: Programming of economic lot sizes. Manage. Sci. 4(2), 115–135 (1958)
Mauri, A.G.: Yield management and perceptions of fairness in the hotel business. Int. Rev. Econ. 54(2), 284–293 (2007)
Mitev, N.N.: More than a failure?: The computerized reservation systems at French Railways. Inf. Technol. People 9(4), 8–19 (1996)
Smith, B., Leimkuhler, J., Darrow, R.: Yield management at american airlines. Interfaces 22, 8–31 (1992)
Thizy, J.M., Van Wassenhove, L.N.: Lagrangean relaxation for the multi-item capacitated lot-sizing problem: a heuristic implementation. IIE Trans. 17(4), 308–313 (1985)
Thomas, J.: Price production decisions with deterministic demand. Manage. Sci. 16(11), 747–750 (1970). doi:10.1287/mnsc.16.11.747
Wagner, H.M., Whitin, T.M.: Dynamic version of the economic lot size model. Manage. Sci. 50(12 Supplement), 1770–1774 (2004). doi:10.1287/mnsc.1040.0262
Whitin, T.M.: Inventory control and price theory. Manage. Sci. 2(1), 61–68 (1955)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lanquepin-Chesnais, G., Haugen, K.K. & Olstad, A. Large-Scale Joint Price-Inventory Decision Problems, Under Resource Limitation and a Discrete Price Set. J Math Model Algor 11, 269–280 (2012). https://doi.org/10.1007/s10852-012-9184-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10852-012-9184-6