Skip to main content
Log in

An Iterated Local Search for the Budget Constrained Generalized Maximal Covering Location Problem

  • Published:
Journal of Mathematical Modelling and Algorithms in Operations Research

Abstract

Capacitated covering models aim at covering the maximum amount of customers’ demand using a set of capacitated facilities. Based on the assumptions made in such models, there is a unique scenario to open a facility in which each facility has a pre-specified capacity and an operating budget. In this paper, we propose a generalization of the maximal covering location problem, in which facilities have different scenarios for being constructed. Essentially, based on the budget invested to construct a given facility, it can provide different service levels to the surrounded customers. Having a limited budget to open the facilities, the goal is locating a subset of facilities with the optimal opening scenario, in order to maximize the total covered demand and subject to the service level constraint. Integer linear programming formulations are proposed and tested using ILOG CPLEX. An iterated local search algorithm is also developed to solve the introduced problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berman, O., Drezner, Z.: A note on the location of an obnoxious facility on a network. Eur. J. Oper. Res. 120, 215–217 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berman, O., Krass, D.: The generalized maximal covering location problem. Comput. Oper. Res. 29, 563–591 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berman, O., Krass, D., Drezner, Z.: The gradual covering decay location problem on a network. Eur. J. Oper. Res. 151, 474–480 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berman, O., Drezner, Z., Krass, D., Wesolowsky, G.O.: The variable radius covering problem. Eur. J. Oper. Res. 196, 516–525 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berman, O., Drezner, Z., Wesolowsky, G.O.: The maximal covering problem with some negative weights. Geogr. Anal. 41, 30–42 (2009)

    Article  Google Scholar 

  6. Berman, O., Drezner, Z., Krass, D.: Cooperative cover location problems: the planar case. IIE Trans. 42, 232–246 (2010)

    Article  Google Scholar 

  7. Berman, O., Drezner, Z., Krass, D.: Generalized coverage: new developments in covering location models. Comput. Oper. Res. 37, 1675–1687 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berman, O., Drezner, Z., Krass D.: Discrete cooperative covering problems. J. Oper. Res. Soc. 62(11), 2002–2012 (2011)

    Article  Google Scholar 

  9. Canovas, L., Pelegrin, B.: Improving some heuristic algorithms for the rectangular p-cover problem. In: Moreno-Perez, J.A. (ed.) Proceedings of the VI Meeting of the EURO Working Group on Locational Analysis, Universidad De La Laguna, Tenerife, pp. 23–31. Spain (1992)

  10. Church, R.L., ReVelle, C.: The maximal covering location problem. Pap. Reg. Sci. Assoc. 32, 101–118 (1974)

    Article  Google Scholar 

  11. Church, R.L., Garfinkel, R.S.: Locating of an obnoxious facility on a network. Transp. Sci. 12, 107–118 (1978)

    Article  MathSciNet  Google Scholar 

  12. Current, J., Daskin, M., Schilling, D.: Discrete network location models. In: Drezner, Z., Hamacher, H. (eds.) Facility Location: Applications and Theory. Springer, Berlin (2002)

    Google Scholar 

  13. Current, J.R., Storbeck, J.E.: Capacitated covering models. Environ. Plann. B 15(2), 153–163 (1988)

    Article  Google Scholar 

  14. Drezner, Z.: On a modified one-center problem. Manag. Sci. 27, 848–851 (1981)

    Article  MATH  Google Scholar 

  15. Drezner, Z., Wesolowsky, G.O., Drezner, T.: The gradual covering problem. Nav. Res. Logist. 51, 841–855 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Erkut, E., Neuman, S.: Analytical models for locating undesirable facilities. Eur. J. Oper. Res. 40, 275–291 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. IBM ILOG CPLEX: http://www.ilog.com. Accessed 11 Feb 2013

  18. Kolen, A., Tamir, A.: Covering problems. In: Mirchandani, P.B., Francis, R.L. (eds.) Discrete location theory, pp. 263–304. Wiley-Interscience, New York, NY (1990)

    Google Scholar 

  19. Kuby, M.J.: Programming models for facility dispersion: the p-dispersion and maxisum dispersion problems. Geogr. Anal. 19, 315–329 (1987)

    Article  Google Scholar 

  20. Lorena, L.N., Senne, E.: A column generation approach to capacitated P-median problems. Comput. Oper. Res. 31(6), 863–876 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Megiddo, N., Zemel, E., Hakimi, S.L.: The maximum coverage location problems. SIAM J. Algebra Discr. 4, 253–261 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Moon, I.D., Chaudhry, S.: An analysis of network location problems with distance constraints. Manag. Sci. 30, 290–307 (1984)

    Article  MATH  Google Scholar 

  23. Osman, I., Christofides, N.: Capacitated clustering problems by hybrid simulated annealing and tabu search. Int. Trans. Oper. Res. 1(3), 317–336 (1994)

    Article  MATH  Google Scholar 

  24. Osman, I., Ahmadi, S.: Guided construction search metaheuristics for the capacitated p-median problem with single source constraint. J. Oper. Res. Soc. 18, 339–348 (2006)

    Google Scholar 

  25. Plastria, F.: Continuous covering location problems. In: Drezner, Z., Hamacher, H. (eds.) Facility Location: Applications and Theory. Springer, Berlin (2002)

    Google Scholar 

  26. Reinelt, G.: A traveling salesman problem library. ORSA J. Comput. 3, 376–384 (1991)

    Article  MATH  Google Scholar 

  27. ReVelle, C., Toregas, C., Falkson, L.: Applications of the location set covering problem. Geogr. Anal. 8, 67–76 (1976)

    Google Scholar 

  28. Santos-Correa, E., Steiner, M.T., Freitas, A.A., Carnieri, C.: A genetic algorithm for solving a capacitated p-median problem. Numer. Algor. 35(4), 373–388 (2004)

    Article  Google Scholar 

  29. Tamir, A.: Obnoxious facility location on graphs. SIAM J. Discret. Math. 4, 550–567 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wanger, J.L., Falkson, L.M.: The optimal nodal location of public facilities with price-sensitive demand. Geogr. Anal. 7, 69–83 (1975)

    Google Scholar 

  31. Watson-Gandy, C.: Heuristic procedures for the m-partial cover problem on a plane. Eur. J. Oper. Res. 11, 149–157 (1982)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Salari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salari, M. An Iterated Local Search for the Budget Constrained Generalized Maximal Covering Location Problem. J Math Model Algor 13, 301–313 (2014). https://doi.org/10.1007/s10852-013-9233-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-013-9233-9

Keywords