Skip to main content
Log in

Polynomially solvable cases of the constant rank unconstrained quadratic 0-1 programming problem

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

In this paper we consider the constant rank unconstrained quadratic 0-1 optimization problem, CR-QP01 for short. This problem consists in minimizing the quadratic function 〈x, Ax〉 + 〈c, x〉 over the set {0,1}n where c is a vector in ℝn and A is a symmetric real n × n matrix of constant rank r.

We first present a pseudo-polynomial algorithm for solving the problem CR-QP01, which is known to be NP-hard already for r = 1. We then derive two new classes of special cases of the CR-QP01 which can be solved in polynomial time. These classes result from further restrictions on the matrix A. Finally we compare our algorithm with the algorithm of Allemand et al. (2001) for the CR-QP01 with negative semidefinite A and extend the range of applicability of the latter algorithm. It turns out that neither of the two algorithms dominates the other with respect to the class of instances which can be solved in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allemand K, Fukuda K, Liebling TM, Steiner E (2001) A polynomial case of unconstrained zero-one quadratic optimization. Math Program 91(1):49–52

    MATH  MathSciNet  Google Scholar 

  • Barahona F (1986) A solvable case of quadratic 0-1 programming. Discr Appl Math 13(1):23–26

    Article  MATH  MathSciNet  Google Scholar 

  • Beineke LW (1997) Biplanar graphs: A survey. Comput Math Appl 34(11):1–8

    Article  MATH  MathSciNet  Google Scholar 

  • Berge C (1976) Graphs and hypergraphs, 2nd edn. North-Holland Publishing Company

  • Bodlaender HL (1998) A partial k-arboretum of graphs with bounded treewidth. Theor Comput Sci 209:1–45

    Article  MATH  MathSciNet  Google Scholar 

  • Boros E, Hammer PL (1991) The max-cut problem and quadratic 0-1 optimization; polyhedral aspects, relaxations and bounds. Ann Oper Res 33(1–4):151–180

    Article  MATH  MathSciNet  Google Scholar 

  • Boros E, Elbassioni K, Gurvich V, Khachiyan L (2004) Generating maximal independent sets for hypergraphs with bounded edge-intersections. In Farach-Colton M (ed) LATIN 2004: Theoretical Informatics: 6th Latin American Symposium. Buenos Aires, Argentina. Lecture Notes Comput Sci 2976:488–498

  • Bron C, Kerbosch J (1973) Finding all cliques of an undirected graph. Comm ACM 16:575–577

    Article  MATH  Google Scholar 

  • Chiba N, Nishizeki T (1985) Arboricity and subgraph listing algorithms. SIAM J Comput 14:210–223

    Article  MATH  MathSciNet  Google Scholar 

  • Crama Y, Hansen P, Jaumard B (1990) The basic algorithm for pseudo-Boolean programming revisited. Discr Appl Math 29(2–3):171–185

    Article  MATH  MathSciNet  Google Scholar 

  • Dahlhaus E, Karpinski M (1988) A fast parallel algorithm for computing all maximal cliques in a graph and related problems. In: Proceedings of the 1st Scandinavian Workshop on Algorithm Theory, Lecture Notes in Computer Science, vol. 318, Springer Verlag, Berlin, Heidelberg, New York, pp 139–144

  • Edelsbrunner H (1987) Algorithms in Combinatorial Geometry, EATCS Monographs on Theoretical Computer Science, vol. 10, Springer Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Eiter T, Gottlob G (1995) Identifying the minimal transversals of a hypergraph and related problems. SIAM J Comput 24(6):1278–1304

    Article  MATH  MathSciNet  Google Scholar 

  • Ferrez J-A, Fukuda K, Liebling TM (2005) Solving the fixed rank convex quadratic maximization in binary variables by a parallel zonotope construction algorithm. Eur J Oper Res 166(1):35–50

    Article  MATH  MathSciNet  Google Scholar 

  • Gantmacher FR (1959) The theory of matrices. AMS Chelsea Publishing

  • Garey MR, Johnson DS (1979) Computers and intractability: A guide to the theory of NP-completeness. W.H. Freeman, San Francisco, CA, 1979

  • Hammer PL, Hansen P, Pardalos PM, Rader DJ (2002) Maximizing the product of two linear functions in 0-1 variables. Optimization 51:511–537

    Article  MATH  MathSciNet  Google Scholar 

  • Johnson DS, Yannakakis M, Papadimitriou CH (1988) On generating all maximal independent sets. Inform Proc Lett 27:119–123

    Article  MATH  MathSciNet  Google Scholar 

  • Mulligan GD, Corneil DG (1972) Corrections to Bierstone’s algorithm for generating cliques. J Assoc Comput Mach 19:244–247

    MATH  Google Scholar 

  • Papadimitriou CH (1981) On the complexity of integer programming. J Assoc Comput Mach 28(4):765–768

    MATH  MathSciNet  Google Scholar 

  • Pardalos PM, Jha S (1991) Graph separation techniques for quadratic zero-one programming. Comput Math Appl 21(6/7):107–113

    Article  MATH  MathSciNet  Google Scholar 

  • Picard JC, Ratliff HD (1975) Minimum cuts and related problems. Networks 5(4):357–370

    MATH  MathSciNet  Google Scholar 

  • Tsukiyama S, Ide M, Ariyoshi H, Shirakawa I (1977) A new algorithm for generating all the maximal independent sets. SIAM J Comput 6:505–517

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Klinz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çela, E., Klinz, B. & Meyer, C. Polynomially solvable cases of the constant rank unconstrained quadratic 0-1 programming problem. J Comb Optim 12, 187–215 (2006). https://doi.org/10.1007/s10878-006-9625-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-006-9625-0

Keywords