Skip to main content

Advertisement

Log in

The total domination subdivision number in graphs with no induced 3-cycle and 5-cycle

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

A set S of vertices of a graph G=(V,E) without isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination number γ t (G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number \(\mathrm{sd}_{\gamma_{t}}(G)\) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. Favaron, Karami, Khoeilar and Sheikholeslami (J. Comb. Optim. 20:76–84, 2010a) conjectured that: For any connected graph G of order n≥3, \(\mathrm{sd}_{\gamma_{t}}(G)\le \gamma_{t}(G)+1\). In this paper we use matching to prove this conjecture for graphs with no 3-cycle and 5-cycle. In particular this proves the conjecture for bipartite graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Favaron O, Karami H, Sheikholeslami SM (2007) Total domination and total domination subdivision numbers of graphs. Australas J Combin 38:229–235

    MathSciNet  MATH  Google Scholar 

  • Favaron O, Karami H, Khoeilar R, Sheikholeslami SM (2009) A new upper bound for total domination subdivision numbers. Graphs Comb 25:41–47

    Article  MathSciNet  MATH  Google Scholar 

  • Favaron O, Karami H, Khoeilar R, Sheikholeslami SM (2010a) On the total domination subdivision number in some classes of graphs. J Comb Optim 20:76–84

    Article  MathSciNet  MATH  Google Scholar 

  • Favaron O, Karami H, Khoeilar R, Sheikholeslami SM (2010b) Matching and total domination subdivision number of graphs with few C 4. Discuss Math, Graph Theory 30:611–618

    Article  MathSciNet  MATH  Google Scholar 

  • Favaron O, Karami H, Sheikholeslami SM (2011) Bounding the total domination subdivision number of a graph in terms of its order. J Comb Optim 21:209–218

    Article  MathSciNet  MATH  Google Scholar 

  • Haynes TW, Hedetniemi ST, van der Merwe LC (2003) Total domination subdivision numbers. J Comb Math Comb Comput 44:115–128

    MATH  Google Scholar 

  • Haynes TW, Henning MA, Hopkins LS (2004a) Total domination subdivision numbers of graphs. Discuss Math, Graph Theory 24:457–467

    Article  MathSciNet  MATH  Google Scholar 

  • Haynes TW, Henning MA, Hopkins LS (2004b) Total domination subdivision numbers of trees. Discrete Math 286:195–202

    Article  MathSciNet  MATH  Google Scholar 

  • Karami H, Khodkar A, Khoeilar R, Sheikholeslami SM (2008) Trees whose total domination subdivision number is one. Bull Inst Comb Appl 53:57–67

    MathSciNet  MATH  Google Scholar 

  • Karami H, Khodkar A, Sheikholeslami SM (2011) An upper bound for total domination subdivision numbers of graphs. Ars Comb 102:321–331

    MathSciNet  MATH  Google Scholar 

  • Lovász L, Plummer MD (1986) Matching theory. Annals of discrete math, vol 29. North Holland, Amsterdam

    MATH  Google Scholar 

  • Sheikholeslami SM (2010) On the total domination subdivision number of a graph. Cent Eur J Math 8:468–473

    Article  MathSciNet  MATH  Google Scholar 

  • Tutte WT (1947) The factorization of linear graphs. J Lond Math Soc 22:107–111

    Article  MathSciNet  MATH  Google Scholar 

  • Velammal S (1997) Studies in graph theory: covering, independence, domination and related topics. PhD Thesis, Manonmaniam Sundaranar University, Tirunelveli

  • West DB (2000) Introduction to graph theory. Prentice-Hall, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Sheikholeslami.

Additional information

This research was in part supported by a grant from IPM (No. 90050043).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karami, H., Khoeilar, R. & Sheikholeslami, S.M. The total domination subdivision number in graphs with no induced 3-cycle and 5-cycle. J Comb Optim 25, 91–98 (2013). https://doi.org/10.1007/s10878-011-9421-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-011-9421-3

Keywords