Skip to main content
Log in

Critical edges/nodes for the minimum spanning tree problem: complexity and approximation

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

In this paper, we study the complexity and the approximation of the k most vital edges (nodes) and min edge (node) blocker versions for the minimum spanning tree problem (MST). We show that the k most vital edges MST problem is NP-hard even for complete graphs with weights 0 or 1 and 3-approximable for graphs with weights 0 or 1. We also prove that the k most vital nodes MST problem is not approximable within a factor n 1−ϵ, for any ϵ>0, unless NP=ZPP, even for complete graphs of order n with weights 0 or 1. Furthermore, we show that the min edge blocker MST problem is NP-hard even for complete graphs with weights 0 or 1 and that the min node blocker MST problem is NP-hard to approximate within a factor 1.36 even for graphs with weights 0 or 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arora S, Lund C (1996) Hardness of approximations. In: Approximation algorithms for NP-hard problems. PWS Publishing Company, Boston, pp 399–446

    Google Scholar 

  • Bar-Noy A, Khuller S, Schieber B (1995) The complexity of finding most vital arcs and nodes. Technical report CS-TR-3539, University of Maryland

  • Bazgan C, Toubaline S, Vanderpooten D (2010) Complexity of determining the most vital elements for the 1-median and 1-center location problems. In: Proceeding of the 4th annual international conference on combinatorial optimization and applications (COCOA 2010), Part I. LNCS, vol 6508, pp 237–251

    Chapter  Google Scholar 

  • Bazgan C, Toubaline S, Vanderpooten D (2011) Efficient algorithms for finding the k most vital edges for the minimum spanning tree problem. In: Proceeding of the 5th annual international conference on combinatorial optimization and applications (COCOA 2011). LNCS, vol 6831, pp 126–140

    Chapter  Google Scholar 

  • Dinur I, Safra S (2005) On the hardness of approximating minimum vertex cover. Ann Math 162(1):439–485

    Article  MathSciNet  MATH  Google Scholar 

  • Frederickson GN, Solis-Oba R (1996) Increasing the weight of minimum spanning trees. In: Proceedings of the 7th ACM-SIAM symposium on discrete algorithms (SODA 1996), pp 539–546. Also appeared in J Algorithms 33(2):244–266 (1999)

    Google Scholar 

  • Håstad J (1999) Clique is hard to approximate within n 1−ε. Acta Math 182(1):105–142

    Article  MathSciNet  MATH  Google Scholar 

  • Hsu L, Jan R, Lee Y, Hung C, Chern M (1991) Finding the most vital edge with respect to minimum spanning tree in a weighted graph. Inf Process Lett 39(5):277–281

    Article  MathSciNet  MATH  Google Scholar 

  • Iwano K, Katoh N (1993) Efficient algorithms for finding the most vital edge of a minimum spanning tree. Inf Process Lett 48(5):211–213

    Article  MathSciNet  MATH  Google Scholar 

  • Khachiyan L, Boros E, Borys K, Elbassioni K, Gurvich V, Rudolf G, Zhao J (2008) On short paths interdiction problems: total and node-wise limited interdiction. Theory Comput Syst 43(2):204–233

    Article  MathSciNet  Google Scholar 

  • Khanna S, Motwani R, Sudan M, Vazirani U (1994) On syntactic versus computational views of approximability. In: Proceedings of the 35th annual IEEE annual symposium on foundations of computer science (FOCS 1994), pp 819–830. Also published in SIAM J Comput 28(1):164–191 (1999)

    Chapter  Google Scholar 

  • Liang W (2001) Finding the k most vital edges with respect to minimum spanning trees for fixed k. Discrete Appl Math 113(2–3):319–327

    Article  MathSciNet  MATH  Google Scholar 

  • Liang W, Shen X (1997) Finding the k most vital edges in the minimum spanning tree problem. Parallel Comput 23(3):1889–1907

    Article  MathSciNet  MATH  Google Scholar 

  • Nardelli E, Proietti G, Widmayer P (2001) A faster computation of the most vital edge of a shortest path. Inf Process Lett 79(2):81–85

    Article  MathSciNet  MATH  Google Scholar 

  • Ratliff HD, Sicilia GT, Lubore SH (1975) Finding the n most vital links in flow networks. Manag Sci 21(5):531–539

    Article  MathSciNet  MATH  Google Scholar 

  • Shen H (1999) Finding the k most vital edges with respect to minimum spanning tree. Acta Inform 36(5):405–424

    Article  MathSciNet  MATH  Google Scholar 

  • Suraweera F, Maheshwari P, Bhattacharya P (1995) Optimal algorithms to find the most vital edge of a minimum spanning tree. Technical report CIT-95-21, School of Computing and Information Technology, Griffith University

  • Wollmer R (1964) Removing arcs from a network. Oper Res 12(6):934–940

    Article  MathSciNet  MATH  Google Scholar 

  • Wood RK (1993) Deterministic network interdiction. Math Comput Model 17(2):1–18

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Bazgan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazgan, C., Toubaline, S. & Vanderpooten, D. Critical edges/nodes for the minimum spanning tree problem: complexity and approximation. J Comb Optim 26, 178–189 (2013). https://doi.org/10.1007/s10878-011-9449-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-011-9449-4

Keywords

Navigation