Skip to main content
Log in

The decycling number of outerplanar graphs

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

For a graph G, let τ(G) be the decycling number of G and c(G) be the number of vertex-disjoint cycles of G. It has been proved that c(G)≤τ(G)≤2c(G) for an outerplanar graph G. An outerplanar graph G is called lower-extremal if τ(G)=c(G) and upper-extremal if τ(G)=2c(G). In this paper, we provide a necessary and sufficient condition for an outerplanar graph being upper-extremal. On the other hand, we find a class \(\mathcal{S}\) of outerplanar graphs none of which is lower-extremal and show that if G has no subdivision of S for all \(S\in \mathcal{S}\), then G is lower-extremal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bar-Yehuda R, Geiger D, Naor J, Roth RM (1998) Approximation algorithms for the feedback vertex set problem with applications to constraint satisfaction and Bayesian inference. SIAM J Comput 27:942–959

    Article  MathSciNet  MATH  Google Scholar 

  • Bau S, Beineke LW, Vandell RC (1998) Decycling snakes. Congr Numer 134:79–87

    MathSciNet  MATH  Google Scholar 

  • Beineke LW, Vandell RC (1997) Decycling graphs. J Graph Theory 25:59–77

    Article  MathSciNet  MATH  Google Scholar 

  • Bodlaender HL (1994) On disjoint cycles. Int J Found Comput Sci 5:59–68

    Article  MATH  Google Scholar 

  • Erdös P, Saks M, Sós VT (1986) Maximum induced trees in graphs. J Comb Theory, Ser B 41:61–79

    Article  MATH  Google Scholar 

  • Fertin G, Godard E, Raspaud A (2002) Minimum feedback vertex set and acyclic coloring. Inf Process Lett 84:131–139

    Article  MathSciNet  MATH  Google Scholar 

  • Festa P, Pardalos PM, Resende MGC (2000) Feedback set problems. In: Du D-Z, Pardalos PM (eds) Handbook of combinatorial optimization, supplement A. Kluwer Academic, Dordrecht, pp 209–259

    Google Scholar 

  • Johnson DS (1974) Approximation algorithms for combinatorial problems. J Comput Syst Sci 9:256–278

    Article  MATH  Google Scholar 

  • Karp RM, Miller RE, Thatcher JW (1975) Reducibility among combinatorial problems. J Symb Log 40:618–619

    Article  Google Scholar 

  • Kleinberg J, Kumar A (1999) Wavelength conversion in optical networks. In: Proc 10th annual ACM-SIAM symposium on discrete algorithms (SODA 99), pp 566–575

    Google Scholar 

  • Kloks T, Lee C-M, Liu J (2002) New algorithms for k-face cover, k-feedback vertex set, and k-disjoint cycles on plane and planar graphs. In: Proceedings of the 28th international workshop on graph-theoretic concepts in computer science (WG 2002), vol 2573. Springer, Berlin, pp 282–295

    Chapter  Google Scholar 

  • Peleg D (1998) Size bounds for dynamic monopolies. Discrete Appl Math 86:263–273

    Article  MathSciNet  MATH  Google Scholar 

  • Peleg D (2002) Local majority voting, small coalitions and controlling monopolies in graphs: a review. Theor Comput Sci 282:231–257

    Article  MathSciNet  MATH  Google Scholar 

  • Silberschatz A, Galvin PB, Gagne G (2003) Operating systems concepts, 6th edn. Wiley, New York

    Google Scholar 

  • Wang C, Lloyd EL, Soffa ML (1985) Feedback vertex sets and cyclically reducible graphs. J ACM 32:296–313

    Article  MathSciNet  MATH  Google Scholar 

  • West DB (2001) Introduction to graph theory, 2nd edn. Prentice-Hall, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huilan Chang.

Additional information

This research is partially supported by NSC 99-2811-M-009-056 and NSC 100-2115-M-390-004-MY2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, H., Fu, HL. & Lien, MY. The decycling number of outerplanar graphs. J Comb Optim 25, 536–542 (2013). https://doi.org/10.1007/s10878-012-9455-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-012-9455-1

Keywords