Skip to main content
Log in

\((1,0,0)\)-Colorability of planar graphs without prescribed short cycles

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Let \(d_1, d_2,\ldots ,d_k\) be \(k\) non-negative integers. A graph \(G\) is \((d_1,d_2,\ldots ,d_k)\)-colorable, if the vertex set of \(G\) can be partitioned into subsets \(V_1,V_2,\ldots ,V_k\) such that the subgraph \(G[V_i]\) induced by \(V_i\) has maximum degree at most \(d_i\) for \(i=1,2,\ldots ,k\). Let \(\digamma \) be the family of planar graphs with cycles of length neither 4 nor 8. In this paper, we prove that a planar graph in \(\digamma \) is \((1,0,0)\)-colorable if it has no cycle of length \(k\) for some \(k\in \{7,9\}\). Together with other known related results, this completes a neat conclusion on the \((1,0,0)\)-colorability of planar graphs without prescribed short cycles, more precisely, for every triple \((4,i,j)\), planar graphs without cycles of length 4, \(i\) or \(j\) are \((1,0,0)\)-colorable whenever \(4<i<j\le 9\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Borodin OV, Glebov AN, Raspaud A, Salavatipour MR (2005) Planar graphs without cycles of length from 4 to 7 are 3-colorable. J Comb Theory B 93:303–311

    Article  MathSciNet  MATH  Google Scholar 

  • Borodin OV, Glebov AN, Montassier M, Raspaud A (2009) Planar graphs without 5- and 7-cycles without adjacent triangles are 3-colorable. J Comb Theory B 99:668–673

    Article  MathSciNet  MATH  Google Scholar 

  • Borodin OV, Glebov AN, Raspaud A (2010) Planar graphs without triangles adjacent to cycles of length from 4 to 7 are 3-colorable. Discret Math 310:2584–2594

    Google Scholar 

  • Chang GJ, Havet F, Montassier M, Raspaud A (preprint) Steinberg’s Conjecture and nearing-colorings

  • Cowen LJ, Cowen RH, Woodall DR (1986) Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency. J Graph Theory 10(2):187–195

    Article  MathSciNet  MATH  Google Scholar 

  • Grötzsch H (1959) Ein dreifarbensatz für dreikreisfreie netze auf der kugel. Math -nat Reihe 8:109–120

    Google Scholar 

  • Hill O, Smith D, Wang Y, Xu L, Yu G (2013) Planar graphs without 4-cycles or 5-cycles are \((3,0,0)\)-colorable. Discret Math 313:2312–2317

    Google Scholar 

  • Hill O, Yu G (2013) A relaxation of Steinberg’s conjecture, on arXiv. http://arxiv.org/abs/1208.3395

  • Kang Y, Jin L, Wang Y (submitted) Planar graphs without cycles of length 4, 6, or 9 are 3-colorable

  • Lu H, Wang Y, Wang W, Bu Y, Montassier M, Raspaud A (2009) On the 3-colorability of planar graphs without 4-, 7- and 9-cycles. Discret Math 309:4596–4607

    Article  MathSciNet  MATH  Google Scholar 

  • Mondal SA (2011) Planar graphs without 4-, 5- and 8-cycles are 3-colorable. Discuss Math 31(4):P775

    Article  MathSciNet  Google Scholar 

  • Steinberg R (1993) The state of the three color problem. In: Gimbel J, Kenndy JW, Quintas LV (eds) Quo Vadis, Graph theory? Ann Diseret Math 55:211–248

  • Wang W, Chen M (2007) Planar graphs without 4, 6, 8-cycles are 3-colorable. Sci China A 50:1552–1562

    Article  MATH  Google Scholar 

  • Wang Y, Lu H, Chen M (2010) Planar graphs without cycles of length 4, 5, 8, or 9 are 3-choosable. Discret Math 310:147–158

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Wu Q, Shen L (2011) Planar graphs without cycles of length 4, 7, 8, or 9 are 3-choosable. Discret Appl Math 159:232–239

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Jin L, Kang Y (in press) Planar graphs without cycles of length from 4 to 6 are (1,0,0)-colorable. Sci Chin Math (in Chinese)

  • Wang Y, Yang Y (submitted-a) Planar graphs without cycles of length 4, 5 or 9 are (1,0,0)-colorable

  • Wang Y, Yang Y (submitted-b) Planar graphs with cycles of length neither 4 nor 8 are (3,0,0)-colorable

  • Wang Y, Xu J (2013) Planar graphs with cycles of length neither 4 nor 6 are (2,0,0)-colorable. Inform Process Lett 113:659–663

    Google Scholar 

  • Wang Y, Xu J (submitted) Improper colorability of planar graphs without 4-cycles

  • Wang Y, Xu J (manuscript) Planar graphs with cycles of length neither 4 nor 9 are (3,0,0)- and (1,1,0)-colorable

  • Xu L, Miao Z, Wang Y (2013) Every planar graph with cycles of length neither 4 nor 5 is \((1,1,0)\)-colorable. J Comb Optim. doi:10.1007/s10878-012-9586-4

  • Xu L, Wang Y (2013) Improper colorability of planar graphs with cycles of length neither 4 nor 6 (in Chinese). Sci Sin Math 43:15–24

    Article  Google Scholar 

  • Xu B (2006) On 3-colorable plane graphs without 5- and 7-cycles. J Comb Theory B 96:958–963

    Article  MATH  Google Scholar 

  • Xu B (2009) On (3; 1)-coloring of plane graphs. SIAM J Discret Math 23(1):205–220

    Article  Google Scholar 

  • Xu J, Li H, Wang Y (submitted) Planar graphs with cycles of length neither 4 nor 7 are (3,0,0)-colorable

Download references

Acknowledgments

Supported by Natural Science Foundation of China, Grant No. 11271134 and 11271335

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingqian Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bu, Y., Xu, J. & Wang, Y. \((1,0,0)\)-Colorability of planar graphs without prescribed short cycles. J Comb Optim 30, 627–646 (2015). https://doi.org/10.1007/s10878-013-9653-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-013-9653-5

Keywords

Navigation