Skip to main content
Log in

A near-optimal adaptive algorithm for maximizing modularity in dynamic scale-free networks

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

We introduce A\(^3\)CS, an adaptive framework with approximation guarantees for quickly identifying community structure in dynamic networks via maximizing Modularity Q. Our framework explores the advantages of the power-law distribution property found in many real-world complex systems. The framework is scalable for very large networks, and more excitingly, possesses approximation factors to ensure the quality of its detected community structure. To the best of our knowledge, this is the first framework that achieves approximation guarantees for the NP-hard Modularity maximization problem, especially on dynamic scale-free networks. To certify our approach, we conduct extensive experiments in comparison with other adaptive methods on both synthesized networks with known community structures and real-world traces including ArXiv e-print citation and Facebook social networks. Excellent empirical results not only confirm our theoretical results but also promise the practical applicability of A\(^3\)CS in a wide range of dynamic networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Adaptive Approximation Algorithm for Community Structure detection

References

  • Agarwal G, Kempe D (2008) Modularity-maximizing graph communities via mathematical programming. Eur Phys J B 66:409–418

    Google Scholar 

  • Aiello W, Chung F, Lu L (2000) A random graph model for massive graphs. In: STOC ’00. ACM, New York, NY, USA

  • Aiello W, Chung F, Lu L (2001) Random evolution in massive graphs. In: Handbook of massive data sets. Kluwer Academic Publishers, Norwell

  • Albert R, Jeong H, Barabasi A (2000) Error and attack tolerance of complex networks. Nature 406:378–482

    Google Scholar 

  • Bansal N, Blum A, Chawla S (2002) Correlation clustering. In: Annual IEEE symposium on foundations of computer science (FOCS), vol 0, p 238. doi:10.1109/SFCS.2002.1181947

  • Barabasi A, Albert R, Jeong H (2000) Scale-free characteristics of random networks: the topology of the world-wide web. Phys A 281:69–77

    Google Scholar 

  • Barabasi AL, Jeong H, Nda Z, Ravasz E, Schubert A, Vicsek T (2002) Evolution of the social network of scientific collaborations. Phys A 311:590–614

    Google Scholar 

  • Bianconi G, Barabasi AL (2001) Competition and multiscaling in evolving networks. EPL (Europhysics Letters) 54(4):436. http://stacks.iop.org/0295-5075/54/i=4/a=436

  • Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008(10):P10008

  • Brandes U, Delling D, Gaertler M, Gorke R, Hoefer M, Nikoloski Z, Wagner D (2008) On modularity clustering. IEEE Trans Knowl Data Eng 20(2):172–188

    Google Scholar 

  • Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70(6):066111

    Google Scholar 

  • DasGupta, B, Desai D (2012) On the complexity of newman’s community finding approach for biological and social networks. J Comput Syst Sci 79(1):50–67. doi:10.1016/j.jcss.2012.04.003

  • Data A (2003) www.cs.cornell.edu/projects/kddcup/datasets.html. KDD Cup 2003

  • Dinh TN, Thai MT (2011) Finding community structure with performance guarantees in scale-free networks. In: SocialCom/PASSAT, pp 888–891

  • Dinh TN, Xuan Y, Thai MT (2009) Towards social-aware routing in dynamic communication networks. IPCCC

  • Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law relationships of the internet topology. In: Proceedings of the conference on applications, technologies, architectures, and protocols for computer communication, SIGCOMM ’99, pp 251–262. ACM, New York, NY, USA. doi:10.1145/316188.316229

  • Ferrante A (2006) Hardness and approximation algorithms of some graph problems

  • Fortunato S, Barthelemy M (2007) Resolution limit in community detection. Proc Natl Acad Sci USA 104(1):36–41

    Google Scholar 

  • Giotis I, Guruswami V (2006) Correlation clustering with a fixed number of clusters. Theory Comput 2(1):249–266. doi:10.4086/toc.2006.v002a013

    Google Scholar 

  • Good BH, de Montjoye YA, Clauset A (2010) Performance of modularity maximization in practical contexts. Phys Rev E 81, 046,106. doi:10.1103/PhysRevE.81.046106

  • Hui P, Crowcroft J, Yoneki E (2011) Bubble rap: social-based forwarding in delay-tolerant networks. IEEE Trans Mobile Comput 10(11):1576–1589. doi:10.1109/TMC.2010.246

    Google Scholar 

  • Lancichinetti A, Fortunato S (2009) Community detection algorithms: a comparative analysis. Phys Rev E 80(5), 056117. doi:10.1103/PhysRevE.80.056117

  • Lancichinetti A, Radicchi F, Ramasco JJ, Fortunato S (2011) Finding statistically significant communities in networks. PLoS ONE 6, e17249

  • Lin Y, Chi Y, Zhu S, Sundaram H, Tseng BL, Facetnet: a framework for analyzing communities and their evolutions in dynamic networks. WWW (2008)

  • Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256

    Article  MATH  MathSciNet  Google Scholar 

  • Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103(23):8577–8582

    Google Scholar 

  • Nguyen N, Dinh T, Xuan Y, Thai M (2011) Adaptive algorithms for detecting community structure in dynamic social networks. In: INFOCOM, 2011 Proceedings IEEE, pp 2282–2290. doi:10.1109/INFCOM.2011.5935045

  • Noack A (2009) Modularity clustering is force-directed layout. Phys Rev E 79, 026,102. doi:10.1103/PhysRevE.79.026102

  • Pásztor B, Mottola L, Mascolo C, Picco G, Ellwood S, Macdonald D (2010) Selective reprogramming of mobile sensor networks through social community detection. In: Proceedings of EWSN, vol 5970, pp 178–193. Springer, Berlin

  • Tantipathananandh C, Berger-Wolf T (2009) Constant-factor approximation algorithms for identifying dynamic communities. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD ’09. ACM, New York, NY, USA, pp 827–836. doi:10.1145/1557019.1557110.

  • Viswanath B, Mislove A, Cha M, Gummadi KP (2009) On the evolution of user interaction in facebook. In: 2nd ACM SIGCOMM Workshop on Social Networks

  • Yu H, Kaminsky M, Gibbons PB, Flaxman A (2006) Sybilguard: defending against sybil attacks via social networks. In: Proceedings of the ACM SIGCOMM 2006 conference, SIGCOMM ’06, pp 267–278. ACM, New York, NY, USA. doi:10.1145/1159913.1159945.

  • Zhu Z, Cao G, Zhu S, Ranjan S, Nucci A (2009) A social network based patching scheme for worm containment in cellular networks. In: INFOCOM 2009, IEEE, pp 1476–1484. doi:10.1109/INFCOM.2009.5062064.

Download references

Acknowledgments

This work is partially supported by NSF CAREER AWARD 0953284 and HDTRA-1-10-1-0050.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thang N. Dinh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinh, T.N., Nguyen, N.P., Alim, M.A. et al. A near-optimal adaptive algorithm for maximizing modularity in dynamic scale-free networks. J Comb Optim 30, 747–767 (2015). https://doi.org/10.1007/s10878-013-9665-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-013-9665-1

Keywords

Navigation