Skip to main content

Approximation for maximizing monotone non-decreasing set functions with a greedy method

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

We study the problem of maximizing a monotone non-decreasing function \(f\) subject to a matroid constraint. Fisher, Nemhauser and Wolsey have shown that, if \(f\) is submodular, the greedy algorithm will find a solution with value at least \(\frac{1}{2}\) of the optimal value under a general matroid constraint and at least \(1-\frac{1}{e}\) of the optimal value under a uniform matroid \((\mathcal {M} = (X,\mathcal {I})\), \(\mathcal {I} = \{ S \subseteq X: |S| \le k\}\)) constraint. In this paper, we show that the greedy algorithm can find a solution with value at least \(\frac{1}{1+\mu }\) of the optimum value for a general monotone non-decreasing function with a general matroid constraint, where \(\mu = \alpha \), if \(0 \le \alpha \le 1\); \(\mu = \frac{\alpha ^K(1-\alpha ^K)}{K(1-\alpha )}\) if \(\alpha > 1\); here \(\alpha \) is a constant representing the “elemental curvature” of \(f\), and \(K\) is the cardinality of the largest maximal independent sets. We also show that the greedy algorithm can achieve a \(1 - (\frac{\alpha + \cdots + \alpha ^{k-1}}{1+\alpha + \cdots + \alpha ^{k-1}})^k\) approximation under a uniform matroid constraint. Under this unified \(\alpha \)-classification, submodular functions arise as the special case \(0 \le \alpha \le 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Given a set \(S \in \mathcal {I}\), return \(f(S)\).

  2. Given an independence family \(\mathcal {I}\) and a set \(Y \subseteq X\), let \(\mathcal {B}(Y)\) be the set of maximal independent sets of \(\mathcal {I}\) included in \(Y\). Then \(\mathcal {I}\) is a \(p\)-system if, for all \(Y \subseteq X\), \(\frac{\max _{A \in \mathcal {B}(Y)} |A|}{\min _{A \in \mathcal {B}(Y)} |A|} \le p\). See the definition in Korte and Hausmann (1998) and Calinescu et al. (2011).

  3. Given prices \(p_1,\ldots , p_n\), return a bundle \(S \in \arg \max _{T,T \subseteq X} f(T) - \sum _{i \in T} p_i\).

References

  • Ageev A, Sviridenko M (2004) Pipage rounding: a new method of constructing algorithms with proven performance guarantee. J Comb Optim 8(3):307–328

    Article  MathSciNet  MATH  Google Scholar 

  • Alimonti P (1994) New local search approximation techniques for maximum generalized satisfiability problems. In: Proceedings of the 2nd Italian conference on algorithms and complexity, pp 40–53

  • Badanidiyuru A, Dobzinski S, Oren S (2011) Optimization with demand oracles. In: Proceedings of the 13th ACM conference on electronic commerce, pp 110–127

  • Buchbinder N, Feldman M, Naor J, Schwartz R (2012) A tight linear time \((1/2)\)-approximation for unconstrained submodular maximization. In: 53rd annual IEEE symposium on foundations of computer science

  • Calinescu G, Chekuri C, Pál M, Vondrák J (2011) Maximizing a submodular set function subject to a matroid constraint. SIAM J Comput 40(6):1740–1766

    Article  MathSciNet  MATH  Google Scholar 

  • Chakrabarty D, Goel G (2008), On the approximability of budgeted allocations and improved lower bounds for submodular welfare maximization and GAP. In: Proceedings of the 49th annual IEEE symposium on foundations of computer science, pp 687–696

  • Chekuri C, Vondrák J, Zenklusen R (2011), Submodular function maximization via the multilinear relaxation and contention resolution schemes. In: Proceedings of the 43rd ACM symposium on theory of computing, pp 783–792

  • Conforti M, Cornuéjols G (1984) Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the rado-edmonds theorem. Discrete Appl Math 7(3):251–274

    Article  MathSciNet  MATH  Google Scholar 

  • Dobzinski S, Schapira M (2006) An improved approximation algorithm for combinatorial auctions with submodular bidders. In: Proceedings of the seventeenth annual ACM-SIAM symposium on discrete algorithm, pp 1064–1073

  • Feige U (1998) A threshold of ln n for approximation set cover. J ACM 45(4):634–652

    Google Scholar 

  • Feige U, Vondrák J (2006), Approximation algorithms for allocation problems: improveing the factor of \(1-\frac{1}{e}\). In: Proceedings of 47th annual IEEE symposium on foundations of computer science, pp 667–676

  • Feige U, Vondrák J (1998) The submodular welfare problem with demand queries. Theory Comput 6:247–290

    Article  MathSciNet  MATH  Google Scholar 

  • Filmus Y, Ward J (2012) A tight combinatorial algorithm for submodular maximization subject to a matroid constraint. In: Proceedings of 53rd annual IEEE symposium on foundations of computer science

  • Fisher ML, Nemhauser GL, Wolsey LA (1978) An analysis of approximations for maximizing submodular set functions - II. Math Progr Study 8:73–87

    Article  MathSciNet  MATH  Google Scholar 

  • Kempe D, Kleinberg J, Tardos E (2005) Influential nodes in a diffusion model for social networks. In: Proceedings of 32nd international colloquium on automata, languages and programming, Lisboa, Portugal

  • Korte B, Hausmann D (1998) An analysis of the greedy heuritic for independence systems. Ann Discret Math 2:65–74

    Article  MathSciNet  MATH  Google Scholar 

  • Kulik A, Shachnai H, Tamir T (2009) Maximizing submodular set functions subject to multiple linear constraints. In: Proceedings of the 20th annual ACM-SIAM symposium on discrete algorithms, pp 545–554

  • Lee J, Mirrokni V S, Nagarajan V, Sviridenko Maxim (2009) Non-monotone submodular maximization under matroid and knapsack constraints. In: Proceedings of the 41st annual ACM symposium on theory of computing, pp 323–332

  • Lee J, Sviridenko M, Vondrák (2010) Submodular maximization over multiple matroids via generalized exchange properties. Math Oper Res 35(4):795–806

    Article  MathSciNet  MATH  Google Scholar 

  • Lloyd SP, Witsenhausen HS (1986) Weapons allocation is NP-complete. In: Proceedings of the 1986 summer conference on simulation, Reno

  • Lu J, Suda T (2003) Coverage-aware self-scheduling in sensor networks. In: Proceedings of IEEE 18th annual workshop on computer communications, Laguna Niguel

  • Nemhauser GL, Wolsey LA, Fisher ML (1978) An analysis of approximations for maximizing submodular set functions-I. Math Progr 14(1):265–294

    Article  MathSciNet  MATH  Google Scholar 

  • Nembauser GL, Wolsey LA (1978) Best algorithms for approximating the maximum of a submodular set function. Math Oper Res 3(3):177–188

    Article  MathSciNet  MATH  Google Scholar 

  • Sviridenko M (2004) A note on maximizing a submodular set function subject to a knapsack constraint. Oper Res Lett 32(1):41–43

    Article  MathSciNet  MATH  Google Scholar 

  • Vondrák J (2008), Optimal approximation for the submodular welfare problem in the value oracle model. In: Proceedings of the 40th annual ACM symposium on theory of computing, pp 67–74

  • Vondrák J (2010) Submodularity and curvature: the optimal algorithm. RIMS Kokyuroku Bessatsu B23:253–266

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the NSFC (No.61135001) and the AFOSR grant (FA2386-13-1-4080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengfu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Moran, B., Wang, X. et al. Approximation for maximizing monotone non-decreasing set functions with a greedy method. J Comb Optim 31, 29–43 (2016). https://doi.org/10.1007/s10878-014-9707-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-014-9707-3

Keywords