Skip to main content
Log in

A combinatorial proof for the circular chromatic number of Kneser graphs

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Chen (J Combin Theory A 118(3):1062–1071, 2011) confirmed the Johnson–Holroyd–Stahl conjecture that the circular chromatic number of a Kneser graph is equal to its chromatic number. A shorter proof of this result was given by Chang et al. (J Combin Theory A 120:159–163, 2013). Both proofs were based on Fan’s lemma (Ann Math 56:431–437, 1952) in algebraic topology. In this article we give a further simplified proof of this result. Moreover, by specializing a constructive proof of Fan’s lemma by Prescott and Su (J Combin Theory A 111:257–265, 2005), our proof is self-contained and combinatorial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alon N, Frankl P, Lovász LL (1986) The chromatic number of Kneser hypergraphs. Trans Am Math Soc 298:359–370

    Article  MathSciNet  MATH  Google Scholar 

  • Bárány I (1978) A short of Kneser’s conjecture. J Combin Theory A 25:325–326

    Article  MATH  Google Scholar 

  • Chang GJ, Liu DD-F, Zhu X (2013) A short proof for Chen’s Alternative Kneser Coloring Lemma. J Combin Theory A 120:159–163

    Article  MathSciNet  MATH  Google Scholar 

  • Chen P-A (2011) A new coloring theorem of Kneser graphs. J Combin Theory A 118(3):1062–1071

    Article  MathSciNet  MATH  Google Scholar 

  • Fan K (1952) A generalization of Tucker’s combinatorial lemma with topological applications. Ann Math 2(56):431–437

    Article  MATH  Google Scholar 

  • Freund RM, Todd MJ (1981) A constructive proof of Tucker’s combinatorial lemma. J Combin Theory A 30:321–325

    Article  MathSciNet  MATH  Google Scholar 

  • Greene J (2002) A new short proof of Kneser’s conjecture. Am Math Monthly 109:918–920

    Article  MathSciNet  MATH  Google Scholar 

  • Hajiabolhassan H, Zhu X (2003) Circular chromatic number of Kneser graphs. J Combin Theory B 88(2):299–303

    Article  MathSciNet  MATH  Google Scholar 

  • Hajiabolhassan H, Taherkhani A (2010) Graph powers and graph homomorphisms. Electron J Combin 17(1):R17

    MathSciNet  MATH  Google Scholar 

  • Johnson A, Holroyd FC, Stahl S (1997) Multichromatic numbers, star chromatic numbers and Kneser graphs. J Graph Theory 26(3):137–145

    Article  MathSciNet  MATH  Google Scholar 

  • Kneser M (1955) Aufgabe 300. Jber Deutsch Math Verein 58:27

    Google Scholar 

  • Kriz I (1992) Equivalent cohomology and lower bounds for chromatic numbers. Trans Am Math Soc 333:567–577

    Article  MathSciNet  MATH  Google Scholar 

  • Kriz I (2000) A corretion to “Equivalent cohomology and lower bounds for chromatic numbers. Trans Am Math Soc 352:1951–1952

    Article  MathSciNet  Google Scholar 

  • Lih K-W, Liu DD-F (2002) Circular chromatic numbers of some reduced Kneser graphs. J Graph Theory 41:62–68

    Article  MathSciNet  MATH  Google Scholar 

  • Lovász L (1978) Kneser’s conjecture, chromatic number, and homotopy. J Combin Theory A 25(3):319–324

    Article  MATH  Google Scholar 

  • Matoušek J (2003) Using the Borsuk–Ulam theorem: lectures on topological methods in combinatorics and geometry. Springer, Berlin

    MATH  Google Scholar 

  • Matoušek J (2004) A combinatorial proof of Kneser’s conjecture. Combinatorica 24:163–170

    Article  MathSciNet  MATH  Google Scholar 

  • Meunier F (2005) A topological lower bound for the circular chromatic number of Schrijver graphs. J Graph Theory 49(4):257–261

    Article  MathSciNet  MATH  Google Scholar 

  • Prescott T, Su F (2005) A constructive proof of Ky Fan’s generalization of Tucker’s lemma. J Combin Theory A 111:257–265

    Article  MathSciNet  MATH  Google Scholar 

  • Sarkaria KS (1990) A generalized Kneser conjecture. J Combin Theory B 49:236–240

    Article  MathSciNet  MATH  Google Scholar 

  • Schrijver A (1978) Vertex-critical subgraphs of Kneser graphs. Nieuw Arch Wiskd III 26:454–461

    MathSciNet  MATH  Google Scholar 

  • Simonyi G, Tardos G (2006) Local chromatic number, Ky Fan’s theorem and circular colorings. Combinatorica 26(5):587–626

    Article  MathSciNet  MATH  Google Scholar 

  • Tucker AW (1946) Some topological properties of disk and sphere. In: Proceedings of the first Canadian Mathematical Congress, Montreal. University of Toronto Press, Toronto, pp 285–309

  • Zhu X (2001) Circular chromatic number: a survey. Discrete Math 229(1–3):371–410

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu X (2006) Recent developments in circular colouring of graphs. Topics in discrete mathematics. Algorithms and combinatorics, vol 26. Springer, Berlin, pp 497–550

  • Zhu X (2012) Circular coloring and flow. Lecture note

  • Ziegler G (2002) Generalized Kneser coloring theorems with combinatorial proofs. Invent Math 147:671–691

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the two anonymous referees for their suggestions, which resulted in better presentation of this article. X. Zhu: Grant Numbers: NSF11171310 and ZJNSF Z6110786.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daphne Der-Fen Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D.DF., Zhu, X. A combinatorial proof for the circular chromatic number of Kneser graphs. J Comb Optim 32, 765–774 (2016). https://doi.org/10.1007/s10878-015-9897-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-015-9897-3

Keywords

Navigation