Skip to main content
Log in

Parameterized algorithms for min–max 2-cluster editing

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

For a given graph and an integer t, the MinMax 2-Clustering problem asks if there exists a modification of a given graph into two maximal disjoint cliques by inserting or deleting edges such that the number of the editing edges incident to each vertex is at most t. It has been shown that the problem can be solved in polynomial time for \(t<n/4\), where n is the number of vertices. In this paper, we design parameterized algorithms for different ranges of t. Let \(k=t-n/4\). We show that the problem is polynomial-time solvable when roughly \(k<\sqrt{n/32}\). When \(k\in o(n)\), we design a randomized and a deterministic algorithm with sub-exponential time parameterized complexity, i.e., the problem is in SUBEPT. We also show that the problem can be solved in \(O({2}^{n/r}\cdot n^2)\) time for \(k<n/12\) and in \(O(n^2\cdot 2^{3n/4+k})\) time for \(n/12\le k< n/4\), where \(r=2+\lfloor (n/4-3k-2)/(2k+1) \rfloor \ge 2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ailon N, Charikar M, Newman A (2008) Aggregating inconsistent information: Ranking and clustering. J ACM 55(5):231:23–27

  • Bansal N, Blum A, Chawla S (2004) Correlation clustering. Mach Learn 56:89–113

    Article  MathSciNet  MATH  Google Scholar 

  • Böcker S, Briesemeister S, Bui Q, Truss A (2009) Going weighted: parameterized algorithms for cluster editing. Theoret Comput Sci 410(52):5467–5480

    Article  MathSciNet  MATH  Google Scholar 

  • Böcker S (2012) A golden ratio parameterized algorithm for Cluster Editing. J Discrete Algorithms 16:79–89

    Article  MathSciNet  MATH  Google Scholar 

  • Bonizzoni P, Vedova GD, Dondi R (2009) A PTAS for the minimum consensus clustering problem with a fixed number of clusters. In: Eleventh Italian Conference on Theoretical Computer Science

  • Bonizzoni P, Vedova GD, Dondi R, Jiang T (2008) On the approximation of correlation clustering and consensus clustering. J Comput Syst Sci 74(5):671–696

    Article  MathSciNet  MATH  Google Scholar 

  • Chen J, Meng J (2012) A \(2k\) kernel for the cluster editing problem. J Comput Syst Sci 78(1):211–220

    Article  MathSciNet  MATH  Google Scholar 

  • Chen LH, Chang MS, Wang CC, Wu BY (2013) On the min–max 2-cluster editing problem. J Inf Sci Eng 29:1109–1120

    MathSciNet  Google Scholar 

  • Damaschke P (2009) Bounded-degree techniques accelerate some parameterized graph algorithms. In: Chen J, Fomin F (eds) Parameterized and exact computation, vol 5917., Lecture Notes in Computer ScienceSpringer, Berlin, pp 98–109

    Chapter  Google Scholar 

  • Damaschke P (2010) Fixed-parameter enumerability of cluster editing and related problems. Theory Comput Syst 46:261–283

    Article  MathSciNet  MATH  Google Scholar 

  • Damaschke P (2016) Sufficient conditions for edit-optimal clusters. Inf Process Lett 116(4):267–272

    Article  MathSciNet  MATH  Google Scholar 

  • Damaschke P, Mogren O (2014) Editing simple graphs. J Graph Algorithms Appl 18:557–576

    Article  MathSciNet  MATH  Google Scholar 

  • Fellows MR, Guo J, Komusiewicz C, Niedermeier R, Uhlmann J (2011) Graph-based data clustering with overlaps. Discrete Optim 8(1): 2–17 (Parameterized Complexity of Discrete Optimization)

  • Filkov V, Skiena S (2004) Integrating microarray data by consensus clustering. Int J Artif Intell Tools 13(04):863–880

    Article  MATH  Google Scholar 

  • Finney RL, Weir WD, Giordano FR (2001) Thomas’ calculus, vol 10. Addison-Wesley, Reading

    Google Scholar 

  • Fomin FV, Kratsch S, Pilipczuk M, Pilipczuk M, Villanger Y (2014) Tight bounds for parameterized complexity of cluster editing with a small number of clusters. J Comput Syst Sci 80(7):1430–1447

    Article  MathSciNet  MATH  Google Scholar 

  • Giotis I, Guruswami V (2006) Correlation clustering with a fixed number of clusters. Theory Comput 2(13):249–266

    Article  MathSciNet  MATH  Google Scholar 

  • Gramm J, Guo J, Hüffner F, Niedermeier R (2005) Graph-modeled data clustering: exact algorithms for clique generation. Theory Comput Syst 38(4):373–392

    Article  MathSciNet  MATH  Google Scholar 

  • Gramm J, Guo J, Hüffner F, Niedermeier R (2004) Automated generation of search tree algorithms for hard graph modification problems. Algorithmica 39:321–347

    Article  MathSciNet  MATH  Google Scholar 

  • Guo J (2009) A more effective linear kernelization for cluster editing. Theoret Comput Sci 410(8–10):718–726

    Article  MathSciNet  MATH  Google Scholar 

  • Harary F (1953) On the notion of balance of a signed graph. Mich Math J 2(2):143–146

    Article  MathSciNet  MATH  Google Scholar 

  • Hüffner F, Komusiewicz C, Moser H, Niedermeier R (2010) Fixed-parameter algorithms for cluster vertex deletion. Theory Comput Syst 47:196–217

    Article  MathSciNet  MATH  Google Scholar 

  • Komusiewicz C, Uhlmann J (2012) Cluster editing with locally bounded modifications. Discrete Appl Math 160(15):2259–2270

    Article  MathSciNet  MATH  Google Scholar 

  • Kováč I, Selečéniová I, Steinová M (2014) On the clique editing problem. In: Csuhaj-Varjú E, Dietzfelbinger M, Ésik Z (eds) Mathematical foundations of computer science 2014, vol 8635., Lecture notes in computer scienceSpringer, Berlin, pp 469–480

    Google Scholar 

  • Schaeffer SE (2007) Graph clustering. Comput Sci Rev 1(1):27–64

    Article  MATH  Google Scholar 

  • Shamir R, Sharan R, Tsur D (2004) Cluster graph modification problems. Discrete Appl Math 144(1–2):173–182

    Article  MathSciNet  MATH  Google Scholar 

  • Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Wu BY, Chen LH (2015) Parameterized algorithms for the 2-clustering problem with minimum sum and minimum sum of squares objective functions. Algorithmica 72:818–835

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSC 101-2221-E-194-025-MY3 and MOST 103-2221-E-194-025-MY3 from National Science Council/Ministry of Science and Technology, Taiwan, R.O.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang Ye Wu.

Appendix

Appendix

We give a proof of that \( (1-x)^{(1/x)}< 1/e \) for all \(1>x>0\).

Let \(j=(1-x)^{(1/x)}\), i.e., \(j^x=1-x\). Taking derivatives on both sides, we have that \(\frac{dj^x}{dx}=\frac{d(1-x)}{dx}=-1\). Since

$$\begin{aligned} \frac{dj^x}{dx}=\frac{dj^x}{dj}\cdot \frac{dj}{dx}= x\cdot j^{x-1}\cdot \frac{dj}{dx} \end{aligned}$$

and \(j>0\), we have that

$$\begin{aligned} \frac{dj}{dx}=\frac{d(1-x)^{(1/x)}}{dx}<0 \end{aligned}$$

for all \(0<x<1\). The proof is completed by the following well-known identity Finney et al. (2001)

$$\begin{aligned} \lim _{x \rightarrow 0^+} (1-x)^{(1/x)}=1/e. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, LH., Wu, B.Y. Parameterized algorithms for min–max 2-cluster editing. J Comb Optim 34, 47–63 (2017). https://doi.org/10.1007/s10878-016-0059-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-016-0059-z

Keywords

Navigation