Skip to main content
Log in

An exact semidefinite programming approach for the max-mean dispersion problem

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

This paper proposes an exact algorithm for the Max-Mean dispersion problem (\(Max-Mean DP\)), an NP-Hard combinatorial optimization problem whose aim is to select the subset of a set such that the average distance between elements is maximized. The problem admits a natural non-convex quadratic fractional formulation from which a semidefinite programming (SDP) relaxation can be derived. This relaxation can be tightened by means of a cutting plane algorithm which iteratively adds the most violated triangular inequalities. The proposed approach embeds the SDP relaxation and the cutting plane algorithm into a branch and bound framework to solve \(Max-Mean DP\) instances to optimality. Computational experiments show that the proposed method is able to solve to optimality in reasonable time instances with up to 100 elements, outperforming other alternative approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alizadeh F (1993) Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J Optim 5:13–51

    Article  MathSciNet  MATH  Google Scholar 

  • Amaral P, Bomze IM, Judice J (2014) Copositivity and constrained fractional quadratic problems. Math Prog 146:325–350

    Article  MathSciNet  MATH  Google Scholar 

  • Borchers B (1999) CSDP, A C library for semidefinite programming. Optim Methods Softw 11:613–623

    Article  MathSciNet  MATH  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Burer S, Vandenbussche D (2008) A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math Prog 113:259–282

    Article  MathSciNet  MATH  Google Scholar 

  • Carrasco R, Anthanh PT, Gallego M, Gortázar F, Duarte A, Marí R (2015) Tabu search for the max-mean dispersion problem. Knowl Based Syst 85:256–264

    Article  MATH  Google Scholar 

  • Chandrasekaran R (1977) Minimum ratio spanning trees. Networks 7:335–342

    Article  MathSciNet  MATH  Google Scholar 

  • Chang TH, Hsin CW, Ma WK, Chi CY (2010) A linear fractional semidefinite relaxation approach to maximum-likelihood detection of higher-order qam ostbc in unknown channels. IEEE Trans signal process 58:2315–2326

    Article  MathSciNet  Google Scholar 

  • Della Croce F, Garraffa M, Salassa F (2016) A hybrid three-phase approach for the max-mean dispersion problem. Comput Oper Res 71:16–22

    Article  MathSciNet  MATH  Google Scholar 

  • Della Croce F, Grosso A, Locatelli M (2009) A heuristic approach for the max-min diversity problem based on max-clique. Comput Oper Res 36:2429–2433

    Article  MathSciNet  MATH  Google Scholar 

  • Frenk H, Schaible S (2009) Fractional Programming. Encyclopedia of Optimization 1080–1091

  • Gallego M, Duarte A, Laguna M, Martí R (2009) Hybrid heuristics for the maximum diversity problem. Comput Optim Appl 44:411–426

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh JB (1996) Computational aspects of the maximum diversity problem. Oper Res Lett 19:175–181

    Article  MathSciNet  MATH  Google Scholar 

  • Glover F, Kuo C-C, Dhir KS (1998) Heuristic algorithms for the maximum diversity problem. J Inf Optim Sci 19:109–132

    MATH  Google Scholar 

  • Goemans MX, Williamson DP (1995) Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J ACM 42:1115–1145

    Article  MathSciNet  MATH  Google Scholar 

  • Helmberg C, Rendl F (1999) A spectral bundle method for semidefinite programming. SIAM J Optim 10:673–696

    Article  MathSciNet  MATH  Google Scholar 

  • Helmberg C, Rendl F, Vanderbei RJ, Wolkowicz H (1996) An interior-point method for semidefinite programming. SIAM J Optim 6:342–361

    Article  MathSciNet  MATH  Google Scholar 

  • Helmberg C, Rendl F, Weismantel R (2000) A semidefinite programming approach to the quadratic knapsack problem. J Comb Optim 4:197–215

    Article  MathSciNet  MATH  Google Scholar 

  • Ishii H, Ibaraki T, Mine H (1976) Fractional knapsack problems. Math Prog 13:255–271

    Article  MathSciNet  MATH  Google Scholar 

  • Kuo CC, Glover F, Dhir KS (1993) Analyzing and modeling the maximum diversity problem by zero-one programming. Decis Sci 24:1171–1185

    Article  Google Scholar 

  • Malick J, Roupin F (2012) Solving k-cluster problems to optimality with semidefinite programming. Math Prog 136:279–300

    Article  MathSciNet  MATH  Google Scholar 

  • Malick J, Krislock N, Roupin F BiqCrunch. http://lipn.univ-paris13.fr/BiqCrunch/

  • Martí R, Gallego M, Duarte A, Pardo EG (2010) A branch and bound algorithm for the maximum diversity problem. Eur J Oper Res 200:36–44

    Article  MATH  Google Scholar 

  • Martí R, Gallego M, Duarte A, Pardo EG (2013) Heuristics and metaheuristics for the maximum diversity problem. J Heuristics 19:591–615

    Article  Google Scholar 

  • Martí R, Sandoya F (2013) GRASP and path relinking for the equitable dispersion problem. Comput Oper Res 40:3091–3099

    Article  MathSciNet  MATH  Google Scholar 

  • Pisinger D (2007) The quadratic knapsack problem—a survey. Discret Appl Math 155:623–648

    Article  MathSciNet  MATH  Google Scholar 

  • Prokopyev OA, Kong N, Martinez-Torres DL (2009) The equitable dispersion problem. Eur J Oper Res 197:59–67

    Article  MathSciNet  MATH  Google Scholar 

  • Radzik T (2013) Fractional combinatorialoptimization. Handbook of combinatorial optimization 1311–1355

  • Resende MGC, Martí R, Gallego M, Duarte A (2010) GRASP and path relinking for the max-min diversity problem. Comput Oper Res 37:498–508

    Article  MathSciNet  MATH  Google Scholar 

  • Sandoya F, Aceves R (2013) Grasp and path relinking to solve the problem of selecting efficient work teams. Recent advances on meta-heuristics and their application to real scenarios. INTECH pp 25–52

  • Silva GC, de Andrade MRQ, Ochi LS, Martins SL, Plastino A (2007) New heuristics for the maximum diversity problem. J Heuristics 13:315–336

    Article  Google Scholar 

  • Stancu-Minasian IM (1997) Fractional programming: theory, methods, and applications. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  • Tawarmalani M, Sahinidis NV (2005) A polyhedral branch-and-cut approach to global optimization. Math Prog 103(2):225–249

    Article  MathSciNet  MATH  Google Scholar 

  • Xiangjing L, Jin-Kao H (2016) A tabu search based memetic algorithm for the max-mean dispersion problem. Comput Oper Res 72:118–127

    Article  MATH  Google Scholar 

  • Zhao Q, Karisch S, Rendl F, Wolkowicz H (1998) Semidefinite programming relaxations for the quadratic assignment problem. J Combin Optim 2:71–109

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors want to thank Brian Borchers from New Mexico Tech and Christoph Helmberg from Chemnitz University of Technology for their helpful suggestions on the use of their solvers (CSDP and ConicBundle, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Garraffa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garraffa, M., Della Croce, F. & Salassa, F. An exact semidefinite programming approach for the max-mean dispersion problem. J Comb Optim 34, 71–93 (2017). https://doi.org/10.1007/s10878-016-0065-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-016-0065-1

Keywords

Navigation