Abstract
A Nordhaus–Gaddum-type result is a lower or an upper bound on the sum or the product of a parameter of a graph and its complement. In this paper we continue the study of Nordhaus–Gaddum bounds for the total Roman domination number \(\gamma _{tR}\). Let G be a graph on n vertices and let \(\overline{G}\) denote the complement of G, and let \(\delta ^*(G)\) denote the minimum degree among all vertices in G and \(\overline{G}\). For \(\delta ^*(G)\ge 1\), we show that (i) if G and \(\overline{G}\) are connected, then \((\gamma _{tR}(G)-4)(\gamma _{tR}(\overline{G})-4)\le 4\delta ^*(G)-4\), (ii) if \(\gamma _{tR}(G), \gamma _{tR}(\overline{G})\ge 8\), then \(\gamma _{tR}(G)+\gamma _{tR}(\overline{G})\le 2\delta ^*(G)+5\) and (iii) \(\gamma _{tR}(G)+\gamma _{tR}(\overline{G})\le n+5\) and \(\gamma _{tR}(G)\gamma _{tR}(\overline{G})\le 6n-5\).
Similar content being viewed by others
References
Abdollahzadeh Ahangar H, Henning MA, Samodivkin V, Yero IG (2016) Total Roman domination in graphs. Appl Anal Discrete Math 10:501–517
Amjadi J, Nazari-Moghaddam S, Sheikholeslami SM (2017) Global total Roman domination in graphs. Discrete Math Alg Appl 9:1750050
Chambers EW, Kinnersley B, Prince N, West DB (2009) Extremal problems for Roman domination. SIAM J Discrete Math 23:1575–1586
Cockayne EJ, Dreyer PA Jr, Hedetniemic SM, Hedetniemic ST (2004) Roman domination in graphs. Discrete Math 278:11–22
Favaron O, Karami H, Sheikholeslami SM (2009) On the Roman domination number in graphs. Discrete Math 309:3447–3451
Haynes TW, Hedetniemi ST, Slater PJ (1998a) Fundamentals of domination in graphs. Marcel Dekker, New York
Haynes TW, Hedetniemi ST, Slater PJ (1998b) Domination in graphs: advanced topics. Marcel Dekker Inc., New York
Henning MA, Yeo A (2013) Total domination in graphs. Springer, Berlin
Karami H, Khodkar A, Sheikholeslami SM, West DB (2012) Connected domination number of a graph and its complement. Graphs Comb 28:123–131
Liu C-H, Chang GJ (2013) Roman domination on strongly chordal graphs. J Comb Optim 26:608–619
Nordhaus EA, Gaddum JW (1956) On complementary graphs. Am Math Mon 63:175–177
Revelle CS, Rosing KE (2000) Defendens imperium romanum: a classical problem in military strategy. Am. Math Mon 107:585–594
Stewart I (1999) Defend the Roman Empire. Sci Am 281:136–139
Xing H-M, Chen X, Chen X-G (2006) A note on Roman domination in graphs. Discrete Math 306:3338–3340
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Amjadi, J., Sheikholeslami, S.M. & Soroudi, M. Nordhaus–Gaddum bounds for total Roman domination. J Comb Optim 35, 126–133 (2018). https://doi.org/10.1007/s10878-017-0158-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10878-017-0158-5