Skip to main content

Advertisement

Log in

Nordhaus–Gaddum bounds for total Roman domination

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

A Nordhaus–Gaddum-type result is a lower or an upper bound on the sum or the product of a parameter of a graph and its complement. In this paper we continue the study of Nordhaus–Gaddum bounds for the total Roman domination number \(\gamma _{tR}\). Let G be a graph on n vertices and let \(\overline{G}\) denote the complement of G, and let \(\delta ^*(G)\) denote the minimum degree among all vertices in G and \(\overline{G}\). For \(\delta ^*(G)\ge 1\), we show that (i) if G and \(\overline{G}\) are connected, then \((\gamma _{tR}(G)-4)(\gamma _{tR}(\overline{G})-4)\le 4\delta ^*(G)-4\), (ii) if \(\gamma _{tR}(G), \gamma _{tR}(\overline{G})\ge 8\), then \(\gamma _{tR}(G)+\gamma _{tR}(\overline{G})\le 2\delta ^*(G)+5\) and (iii) \(\gamma _{tR}(G)+\gamma _{tR}(\overline{G})\le n+5\) and \(\gamma _{tR}(G)\gamma _{tR}(\overline{G})\le 6n-5\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdollahzadeh Ahangar H, Henning MA, Samodivkin V, Yero IG (2016) Total Roman domination in graphs. Appl Anal Discrete Math 10:501–517

    Article  MathSciNet  MATH  Google Scholar 

  • Amjadi J, Nazari-Moghaddam S, Sheikholeslami SM (2017) Global total Roman domination in graphs. Discrete Math Alg Appl 9:1750050

  • Chambers EW, Kinnersley B, Prince N, West DB (2009) Extremal problems for Roman domination. SIAM J Discrete Math 23:1575–1586

    Article  MathSciNet  MATH  Google Scholar 

  • Cockayne EJ, Dreyer PA Jr, Hedetniemic SM, Hedetniemic ST (2004) Roman domination in graphs. Discrete Math 278:11–22

    Article  MathSciNet  Google Scholar 

  • Favaron O, Karami H, Sheikholeslami SM (2009) On the Roman domination number in graphs. Discrete Math 309:3447–3451

    Article  MathSciNet  MATH  Google Scholar 

  • Haynes TW, Hedetniemi ST, Slater PJ (1998a) Fundamentals of domination in graphs. Marcel Dekker, New York

    MATH  Google Scholar 

  • Haynes TW, Hedetniemi ST, Slater PJ (1998b) Domination in graphs: advanced topics. Marcel Dekker Inc., New York

    MATH  Google Scholar 

  • Henning MA, Yeo A (2013) Total domination in graphs. Springer, Berlin

    Book  MATH  Google Scholar 

  • Karami H, Khodkar A, Sheikholeslami SM, West DB (2012) Connected domination number of a graph and its complement. Graphs Comb 28:123–131

    Article  MathSciNet  MATH  Google Scholar 

  • Liu C-H, Chang GJ (2013) Roman domination on strongly chordal graphs. J Comb Optim 26:608–619

    Article  MathSciNet  MATH  Google Scholar 

  • Nordhaus EA, Gaddum JW (1956) On complementary graphs. Am Math Mon 63:175–177

    Article  MATH  Google Scholar 

  • Revelle CS, Rosing KE (2000) Defendens imperium romanum: a classical problem in military strategy. Am. Math Mon 107:585–594

    Article  MathSciNet  MATH  Google Scholar 

  • Stewart I (1999) Defend the Roman Empire. Sci Am 281:136–139

    Article  Google Scholar 

  • Xing H-M, Chen X, Chen X-G (2006) A note on Roman domination in graphs. Discrete Math 306:3338–3340

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Sheikholeslami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amjadi, J., Sheikholeslami, S.M. & Soroudi, M. Nordhaus–Gaddum bounds for total Roman domination. J Comb Optim 35, 126–133 (2018). https://doi.org/10.1007/s10878-017-0158-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-017-0158-5

Keywords