Skip to main content

Advertisement

Log in

A randomized competitive group testing procedure

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

In many fault detection problems, we want to identify all defective items from a set of n items using the minimum number of tests. Group testing is for the scenario where each test is on a subset of items, and tells whether the subset contains at least one defective item or not. In practice, the number d of defective items is often unknown in advance. In this paper, we propose a randomized group testing procedure RGT for the scenario where the number d of defectives is unknown in advance, and prove that RGT is competitive. By incorporating numerical results, we obtain improved upper bounds on the expected number of tests performed by RGT, for \(1\le d\le 10^6\). In particular, for \(1\le d\le 10^6\) and the special case where n is a power of 2, we obtain an upper bound of \(d\log \frac{n}{d}+Cd+O(\log d)\) with \(C\approx 2.67\) on the expected number of tests performed by RGT, which is better than the currently best upper bound in Cheng et al. (INFORMS J Comput 26(4):677–689, 2014). We conjecture that the above improved upper bounds based on numerical results from \(1\le d\le 10^6\) actually hold for all \(d\ge 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bar-Noy A, Hwang FK, Kessler I, Kutten S (1994) A new competitive algorithm for group testing. Discret Appl Math 52:29–38

    Article  MathSciNet  Google Scholar 

  • Cheng Y, Du DZ, Xu Y (2014) A zig-zag approach for competitive group testing. INFORMS J Comput 26(4):677–689

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng Y, Xu Y (2014) An efficient FPRAS type group testing procedure to approximate the number of defectives. J Comb Optim 27(2):302–314

    Article  MathSciNet  MATH  Google Scholar 

  • De Bonis A, Vaccaro U (2003) Constructions of generalized superimposed codes with applications to group testing and conflict resolution in multiple access channels. Theor Comput Sci 306:223–243

    Article  MathSciNet  MATH  Google Scholar 

  • Dorfman R (1943) The detection of defective members of large populations. Ann Math Stat 14:436–440

    Article  Google Scholar 

  • Du DZ, Hwang FK (1993) Competitive group testing. Discret Appl Math 45(3):221–232

    Article  MathSciNet  MATH  Google Scholar 

  • Du DZ, Hwang FK (2000) Combinatorial group testing and its applications, 2nd edn. World Scientific, Singapore

    MATH  Google Scholar 

  • Du DZ, Park H (1994) On competitive group testing. SIAM J Comput 23(5):1019–1025

    Article  MathSciNet  Google Scholar 

  • Du DZ, Xue GL, Sun SZ, Cheng SW (1994) Modifications of competitive group testing. SIAM J Comput 23:82–96

    Article  MathSciNet  MATH  Google Scholar 

  • Harvey NJA, Patrascu M, Wen Y, Yekhanin S, Chan VWS (2007) Non-adaptive fault diagnosis for all-optical networks via combinatorial group testing on graphs. In: The 26th IEEE international conference on computer communications, pp 697–705

  • Havil J (2003) Gamma: exploring Euler’s constant. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Hong EH, Ladner RE (2002) Group testing for image compression. IEEE Trans Image Process 11:901–911

    Article  Google Scholar 

  • Hwang FK (1972) A method for detecting all defective members in a population by group testing. J Am Stat Assoc 67:605–608

    Article  MATH  Google Scholar 

  • Lo C, Liu M, Lynch JP, Gilbert AC (2013) Efficient sensor fault detection using combinatorial group testing. In: 2013 IEEE international conference on distributed computing in sensor systems, pp 199–206

  • Manasse M, McGeoch LA, Sleator D (1988) Competitive algorithms for on-line problems. In: Proceedings of 20th annual ACM symposium on theory of computing, ACM, New York, pp 322–333

  • Schlaghoff J, Triesch E (2005) Improved results for competitive group testing. Comb Probab Comput 14:191–202

    Article  MathSciNet  MATH  Google Scholar 

  • Sleator D, Tarjan R (1985) Amortized efficiency of list update and paging rules. Commun ACM 28(2):202–208

    Article  MathSciNet  Google Scholar 

  • Sobel M, Groll PA (1959) Group testing to eliminate efficiently all defectives in a binomial sample. Bell Syst Tech J 38:1179–1252

    Article  MathSciNet  Google Scholar 

  • Wein LM, Zenios SA (1996) Pooled testing for hiv screening: capturing the dilution effect. Oper Res 44(4):543–569

    Article  MATH  Google Scholar 

  • Wolf J (1985) Born again group testing: multiaccess communications. IEEE Trans Inf Theory IT–31:185–191

    Article  MathSciNet  MATH  Google Scholar 

  • Young RM (1991) Euler’s constant. Math Gaz 75:187–190

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China under Grant Nos. 71201122 and 11771346.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxi Cheng.

Appendices

Appendix A: Proof of Lemma 4.3

Since \(\lambda \) is a nonnegative integer random variable, and by Eq. (2),

$$\begin{aligned} E(\lambda )=\sum _{k=1}^{\infty }\Pr (\lambda \ge k)=\sum _{k=1}^{\infty } \Big [1-(1-2^{-k})^d\Big ]^2. \end{aligned}$$
(3)

Define \(g(x)=\big [1-(1-2^{-x})^d\big ]^2\). Then, from the above \(E(\lambda )=\sum _{k=1}^{\infty } g(k)\). We will approximate \(E(\lambda )\) by integration of g(x). Since g(x) is monotonically decreasing for \(x\ge 0\) and \(g(0)=1\), we have \(-1+\int _{0}^{\infty } g(x) \mathbf d x ~\le ~ E(\lambda ) ~\le ~ \int _{0}^{\infty } g(x) \mathbf d x\), that is

$$\begin{aligned} -1+\int _{0}^{\infty } \left[ 1-(1-2^{-x})^d\right] ^2 \mathbf d x ~\le ~ E(\lambda ) ~\le ~ \int _{0}^{\infty } \left[ 1-(1-2^{-x})^d\right] ^2 \mathbf d x. \end{aligned}$$
(4)

Let \(H_d=\sum _{i=1}^{d}\frac{1}{i}\) be the d-th harmonic number, for \(d\ge 1\). We will use the following result on the integration of g(x).

Claim 6.1

$$\begin{aligned} \int _{0}^{\infty } \left[ 1-(1-2^{-x})^d\right] ^2 \mathbf d\mathbf x=\frac{1}{\ln 2}(2H_{d}-H_{2d}). \end{aligned}$$

Before proving the above result, first notice that from the following bounds on \(H_d\) (Young 1991; Havil 2003, pp. 73–75),

$$\begin{aligned} \ln d+\gamma +\frac{1}{2(d+1)}<H_d<\ln d+\gamma +\frac{1}{2d}, \end{aligned}$$
(5)

where \(\gamma =0.577\cdots \) is the Euler–Mascheroni constant, and by Inequality (4), Claim 6.1 implies that for \(d\ge 1\)

$$\begin{aligned} E(\lambda )\ge & {} -1+\frac{1}{\ln 2}(2H_{d}-H_{2d})\\> & {} -1+\frac{1}{\ln 2}\left\{ 2\left( \ln d+\gamma +\frac{1}{2(d+1)}\right) -\left( \ln (2d)+\gamma +\frac{1}{2(2d)}\right) \right\} \\> & {} -1+\frac{1}{\ln 2}(\ln d+\gamma -\ln 2)\\= & {} \log d+\frac{\gamma }{\ln 2}-2, \end{aligned}$$

and

$$\begin{aligned} E(\lambda )\le & {} \frac{1}{\ln 2}(2H_{d}-H_{2d})\\< & {} \frac{1}{\ln 2}\left\{ 2\left( \ln d+\gamma +\frac{1}{2d}\right) -\left( \ln (2d)+\gamma +\frac{1}{2(2d+1)}\right) \right\} \\< & {} \frac{1}{\ln 2}\left( \ln d+\gamma -\ln 2+\frac{1}{d} \right) \\= & {} \log d+\frac{\gamma }{\ln 2}-1+\frac{1}{d\ln 2}, \end{aligned}$$

which establishes Lemma 4.3.

The rest of the proof is devoted to prove Claim 6.1.

$$\begin{aligned}&\int _{0}^{\infty } \Big [1-(1-2^{-x})^d\Big ]^2 \mathbf d x\\&\quad = \frac{1}{\ln 2} \int _{0}^{\infty } \Big [1-(1-e^{-x{\ln 2}})^d\Big ]^2 \mathbf d (x\ln 2)\\&\quad = \frac{1}{\ln 2} \int _{0}^{\infty } \Big [1-(1-e^{-y})^d\Big ]^2 \mathbf d y\\&\quad = \frac{1}{\ln 2} \int _{0}^{\infty } \Big \{1-(1-e^{-y})^{2d}-2(1-e^{-y})^{d}\big [1-(1-e^{-y})^{d}\big ]\Big \} \mathbf d y\\&\quad = \frac{1}{\ln 2} \int _{0}^{\infty } \Big [1-(1-e^{-y})^{2d}\Big ]\mathbf d y-\frac{2}{\ln 2} \int _{0}^{\infty } (1-e^{-y})^{d}\Big [1-(1-e^{-y})^{d}\Big ] \mathbf d y. \end{aligned}$$

Define \(I(d)=\int _{0}^{\infty } \big [1-(1-e^{-y})^d \big ]\mathbf d y\), and \(J(d)=\int _{0}^{\infty } (1-e^{-y})^{d}\big [1-(1-e^{-y})^{d}\big ] \mathbf d y\). Then,

$$\begin{aligned} \int _{0}^{\infty } \Big [1-(1-2^{-x})^d\Big ]^2 \mathbf d x=\frac{I(2d)-2J(d)}{\ln 2}. \end{aligned}$$

Next we calculate I(d) and J(d), respectively.

Observation 6.1

\(I(d)=H_d\), for \(d\ge 1\).

Proof

It is easy to directly calculate that \(I(1)=1\). For \(d>1\),

$$\begin{aligned} I(d)= & {} \int _{0}^{\infty } \Big [1-(1-e^{-y})^d \Big ]\mathbf d y\\= & {} \int _{0}^{\infty } \Big [1-(1-e^{-y})^{d-1}+(1-e^{-y})^{d-1}e^{-y}\Big ]\mathbf d y\\= & {} \int _{0}^{\infty } \Big [1-(1-e^{-y})^{d-1}\Big ]\mathbf d y+\int _{0}^{\infty } (1-e^{-y})^{d-1}e^{-y}{} \mathbf d y\\= & {} I(d-1)+\int _{0}^{\infty } (1-e^{-y})^{d-1}{} \mathbf d (1-e^{-y})\\= & {} I(d-1)+\left. \frac{1}{d}(1-e^{-y})^d\right| _{0}^{\infty }\\= & {} I(d-1)+\frac{1}{d}. \end{aligned}$$

Therefore, \(I(d)=\sum _{i=1}^{d}\frac{1}{i}=H_d\). \(\square \)

Observation 6.2

\(J(d)=H_{2d}-H_{d}\), for \(d\ge 1\).

Proof

It is easy to directly calculate that \(J(1)=1/2\). For \(d>1\),

$$\begin{aligned} J(d)= & {} \int _{0}^{\infty } (1-e^{-y})^{d}\Big [1-(1-e^{-y})^{d}\Big ] \mathbf d y\\= & {} \int _{0}^{\infty } (1-e^{-y})(1-e^{-y})^{d-1}\Big [1-(1-e^{-y})^{d}\Big ] \mathbf d y\\= & {} \int _{0}^{\infty } (1-e^{-y})^{d-1}\Big [1-(1-e^{-y})^{d}\Big ] \mathbf d y\\&-\int _{0}^{\infty } e^{-y} (1-e^{-y})^{d-1}\Big [1-(1-e^{-y})^{d}\Big ] \mathbf d y\\= & {} \int _{0}^{\infty } (1-e^{-y})^{d-1}\Big [1-(1-e^{-y})^{d-1}+(1-e^{-y})^{d-1}e^{-y}\Big ] \mathbf d y\\&+\int _{0}^{\infty } (1-e^{-y})^{d-1}\Big [1-(1-e^{-y})^{d}\Big ] \mathbf d (e^{-y})\\= & {} J(d-1)+\int _{0}^{\infty } (1-e^{-y})^{2d-2}e^{-y}{} \mathbf d y\\&+\int _{0}^{\infty } (1-e^{-y})^{d-1}\Big [1-(1-e^{-y})^{d}\Big ] \mathbf d (e^{-y})\\= & {} J(d-1)-\int _{0}^{\infty } (1-e^{-y})^{2d-2}{} \mathbf d (e^{-y})+\int _{0}^{\infty } (1-e^{-y})^{d-1}{} \mathbf d (e^{-y})\\&-\int _{0}^{\infty } (1-e^{-y})^{2d-1}{} \mathbf d (e^{-y})\\= & {} J(d-1)+\left. \frac{(1-e^{-y})^{2d-1}}{2d-1}\right| _{0}^{\infty } -\left. \frac{(1-e^{-y})^{d}}{d}\right| _{0}^{\infty }+\left. \frac{(1-e^{-y})^{2d}}{2d}\right| _{0}^{\infty }\\= & {} J(d-1)+\frac{1}{2d-1}-\frac{1}{d}+\frac{1}{2d}\\= & {} J(d-1)+\frac{1}{2d-1}-\frac{1}{2d}. \end{aligned}$$

Therefore, \(J(d)=\sum _{i=1}^{2d}\frac{(-1)^{i+1}}{i}=\sum _{i=1}^{2d}\frac{1}{i}-2\sum _{i=1}^{d}\frac{1}{2i}=H_{2d}-H_{d}\). \(\Box \)

From the above,

$$\begin{aligned} \int _{0}^{\infty } \Big [1-(1-2^{-x})^d\Big ]^2 \mathbf d x= & {} \frac{I(2d)-2J(d)}{\ln 2}=\frac{H_{2d}-2(H_{2d}-H_d)}{\ln 2}\\= & {} \frac{1}{\ln 2}(2H_{d}-H_{2d}), \end{aligned}$$

which establishes Claim 6.1.

Appendix B: Proof of Lemma 4.4

First, we write \(E(2^{\lambda })\) as the following

$$\begin{aligned} E(2^{\lambda })= & {} \sum _{k=0}^{\infty }2^k\Pr (\lambda =k)\\= & {} \sum _{k=0}^{\infty }2^k\Big [\Pr (\lambda \ge k)-\Pr (\lambda \ge k+1)\Big ]\\= & {} \Pr (\lambda \ge 0)+\sum _{k=1}^{\infty }2^k\Pr (\lambda \ge k)-\sum _{k=0}^{\infty }2^k\Pr (\lambda \ge k+1)\\= & {} 1+\sum _{k=1}^{\infty }2^k\Pr (\lambda \ge k)-\frac{1}{2}\sum _{k_1=1}^{\infty }2^{k_1}\Pr (\lambda \ge k_1)\\= & {} 1+\frac{1}{2}\sum _{k=1}^{\infty }2^k\Pr (\lambda \ge k)\\= & {} 1+\frac{1}{2}\sum _{k=1}^{\infty }2^k\Big [1-(1-2^{-k})^d\Big ]^2. \end{aligned}$$

Thus,

$$\begin{aligned} E(2^{\lambda })= 1+\frac{1}{2}\sum _{k=1}^{\infty }2^k\Big [1-(1-2^{-k})^d\Big ]^2. \end{aligned}$$
(6)

We will prove an upper bound of 3d / 2 on \(E(2^{\lambda })\) based on Equ. (6). For \(d=1\), by Equ. (6) it is easy to calculate that \(E(2^{\lambda })=3/2\), and so the lemma holds. Next we prove the lemma for integer \(d>1\).

Note that for integers \(k,d\ge 1\), clearly \(2^k\big [1-(1-2^{-k})^d\big ]^2\le 2^k\), also

$$\begin{aligned} 2^k\Big [1-(1-2^{-k})^d\Big ]^2\le 2^k\Big [1-(1-2^{-k}d)\Big ]^2=2^{-k}d^2, \end{aligned}$$

where for the second inequality we use the fact that \((1-y)^d\ge 1-yd\) for \(0\le y\le 1\) and \(d\ge 1\).

Therefore, for any integer \(\mu \ge 1\), we have

$$\begin{aligned} E(2^{\lambda })= & {} 1+\frac{1}{2}\sum _{k=1}^{\infty }2^k\Big [1-(1-2^{-k})^d\Big ]^2\\= & {} 1+\frac{1}{2}\sum _{k=1}^{\mu }2^k\Big [1-(1-2^{-k})^d\Big ]^2+\frac{1}{2}\sum _{k=\mu +1}^{\infty }2^k\Big [1-(1-2^{-k})^d\Big ]^2\\\le & {} 1+\frac{1}{2}\sum _{k=1}^{\mu } 2^k+\frac{1}{2}\sum _{k=\mu +1}^{\infty } 2^{-k}d^2\\= & {} 2^{\mu }+2^{-\mu -1}d^2. \end{aligned}$$

Next we show that for every integer \(d>1\),

$$\begin{aligned} \min _{\mu \ge 1, ~\mu \in Z}\Big \{2^{\mu }+2^{-\mu -1}d^2\Big \}\le \frac{3d}{2}, \end{aligned}$$

which establishes Lemma 4.4.

Since

$$\begin{aligned} 2^{\mu }+2^{-\mu -1}d^2-\frac{3d}{2}=\frac{(2^{\mu }-d)(2^{\mu +1}-d)}{2^{\mu +1}}, \end{aligned}$$

for integer \(d>1\) we can choose \(\mu =\mu _0\ge 1\) such that \(2^{\mu _0}\le d<2^{\mu _0+1}\), then from the above equality we have \(2^{\mu _0}+2^{-\mu _0-1}d^2\le \frac{3d}{2}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Cheng, Y. & Xu, Y. A randomized competitive group testing procedure. J Comb Optim 35, 667–683 (2018). https://doi.org/10.1007/s10878-017-0190-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-017-0190-5

Keywords