Skip to main content
Log in

A quadratic time exact algorithm for continuous connected 2-facility location problem in trees

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

This paper studies the continuous connected 2-facility location problem (CC2FLP) in trees. Let \(T = (V, E, c, d, \ell , \mu )\) be an undirected rooted tree, where each node \(v \in V\) has a weight \(d(v) \ge 0\) denoting the demand amount of v as well as a weight \(\ell (v) \ge 0\) denoting the cost of opening a facility at v, and each edge \(e \in E\) has a weight \(c(e) \ge 0\) denoting the cost on e and is associated with a function \(\mu (e,t) \ge 0\) denoting the cost of opening a facility at a point x(et) on e where t is a continuous variable on e. Given a subset \(\mathcal {D} \subseteq V\) of clients, and a subset \(\mathcal {F} \subseteq \mathcal {P}(T)\) of continuum points admitting facilities where \(\mathcal {P}(T)\) is the set of all the points on edges of T, when two facilities are installed at a pair of continuum points \(x_1\) and \(x_2\) in \(\mathcal {F}\), the total cost involved in CC2FLP includes three parts: the cost of opening two facilities at \(x_1\) and \(x_2\), K times the cost of connecting \(x_1\) and \(x_2\), and the cost of all the clients in \(\mathcal {D}\) connecting to some facility. The objective is to open two facilities at a pair of continuum points in \(\mathcal {F}\) to minimize the total cost, for a given input parameter \(K \ge 1\). This paper focuses on the case of \(\mathcal {D} = V\) and \(\mathcal {F} = \mathcal {P}(T)\). We first study the discrete version of CC2FLP, named the discrete connected 2-facility location problem (DC2FLP), where two facilities are restricted to the nodes of T, and devise a quadratic time edge-splitting algorithm for DC2FLP. Furthermore, we prove that CC2FLP is almost equivalent to DC2FLP in trees, and develop a quadratic time exact algorithm based on the edge-splitting algorithm. Finally, we adapt our algorithms to the general case of \(\mathcal {D} \subseteq V\) and \(\mathcal {F} \subseteq \mathcal {P}(T)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arora S, Lund C, Motwani R, Sudan M, Szegedy M (1998) Proof verification and the hardness of approximation problems. J ACM 45(3):501–555

    Article  MathSciNet  Google Scholar 

  • Averbakh I, Berman O (2003) An improved algorithm for the minmax regret median problem on a tree. Networks 41(2):97–103

    Article  MathSciNet  Google Scholar 

  • Averbakh I, Berman O (2000) Algorithms for the robust 1-center problem on a tree. Eur J Oper Res 123(2):292–302

    Article  MathSciNet  Google Scholar 

  • Averbakh I, Berman O (1997) Minimax regret \(p\)-center location on a network with demand uncertainty. Locat Sci 5(4):247–254

    Article  Google Scholar 

  • Averbakh I, Berman O (2000) Minmax regret median location on a network under uncertainty. INFORMS J Comput 12(2):104–110

    Article  MathSciNet  Google Scholar 

  • Banik A, Bhattacharya B, Das S, Kameda T, Song Z (2016) The \(p\)-center problem in tree networks revisited. In: Proceedings of 15th SWAT, LIPICS, pp 6:1–6:15

  • Bardossy MG, Raghavan S (2010) Dual-based local search for the connected facility location and related problems. INFORMS J Comput 22(4):584–602

    Article  MathSciNet  Google Scholar 

  • Becker RI, Lari I, Scozzari A (2007) Algorithms for central-median paths with bounded length on trees. Eur J Oper Res 179(3):1208–1220

    Article  MathSciNet  Google Scholar 

  • Ben-Moshe B, Bhattacharya B, Shi QS (2006) An optimal algorithm for the continuous/discrete weighted 2-center problem in trees. In: Proceedings of 7th LATIN, LNCS 3887, pp 166–177

    Chapter  Google Scholar 

  • Benkoczi R (2004) Cardinality constrained facility location problems in trees. Ph.D. Dissertation, School of Computing Science, Simon Fraser University, Canada

  • Benkoczi R, Bhattacharya B, Chrobak M, Larmore L, Rytter W (2003) Faster algorithms for \(k\)-median problems in trees. In: Proceedings of 28th MFCS, LNCS 2747, pp 218–227

  • Benkoczi R, Bhattacharya B, Tamir A (2009) Collection depots facility location problems in trees. Networks 53(1):50–62

    Article  MathSciNet  Google Scholar 

  • Berman O, Simchi-Levi D, Tamir A (1988) The minimax multistop location problem on a tree. Networks 18(1):39–49

    Article  MathSciNet  Google Scholar 

  • Bhattacharya B, Shi QS, Tamir A (2009) Optimal algorithms for the path/tree-shaped facility location problems in trees. Algorithmica 55(4):601–618

    Article  MathSciNet  Google Scholar 

  • Bhattacharya B, Kameda T, Song Z (2014) A linear time algorithm for computing minmax regret 1-median on a tree network. Algorithmica 70(1):2–21

    Article  MathSciNet  Google Scholar 

  • Bhattacharya B, Kameda T, Song Z (2015) Minmax regret 1-center algorithms for path/tree/unicycle/cactus networks. Discrete Appl Math 195:18–30

    Article  MathSciNet  Google Scholar 

  • Brodal G, Georgiadis L, Katriel I (2008) An \(O(n \log n)\) version of the Averbakh–Berman algorithm for the robust median of a tree. Oper Res Lett 36(1):14–18

    Article  MathSciNet  Google Scholar 

  • Burkard RE, Cela E, Dollani H (2000) 2-Medians in trees with pos/neg weights. Discrete Appl Math 105(1–3):51–71

    Article  MathSciNet  Google Scholar 

  • Burkard RE, Dollani H (2003) Center problems with pos/neg weights on trees. Eur J Oper Res 145(3):483–495

    Article  MathSciNet  Google Scholar 

  • Burkard RE, Dollani H (2002) A note on the robust 1-center problem on trees. Ann OR 110(1):69–82

    Article  MathSciNet  Google Scholar 

  • Burkard RE, Dollani H (2001) Robust location problems with pos/neg weights on a tree. Networks 38(2):102–113

    Article  MathSciNet  Google Scholar 

  • Burkard RE, Dollani H, Lin YX, Rote G (2001) The obnoxious center problem on a tree. SIAM J Discrete Math 14(4):498–509

    Article  MathSciNet  Google Scholar 

  • Burkard RE, Fathali J (2007) A polynomial method for the pos/neg weighted 3-median problem on a tree. Math Methods OR 65(2):229–238

    Article  MathSciNet  Google Scholar 

  • Burkard RE, Fathali J, Kakhki HT (2007) The \(p\)-maxian problem on a tree. Oper Res Lett 35(3):331–335

    Article  MathSciNet  Google Scholar 

  • Chan CY, Ku SC, Lu CJ, Wang BF (2009) Efficient algorithms for two generalized 2-median problems and the group median problem on trees. Theor Comput Sci 410:867–876

    Article  MathSciNet  Google Scholar 

  • Chandrasekaran R, Tamir A (1982) Polynomially bounded algorithms for locating \(p\)-centers on a tree. Math Program 22(1):304–315

    Article  MathSciNet  Google Scholar 

  • Chandrasekaran R, Tamir A (1980) An \(O((n \log p)^2)\) algorithm for the continuous \(p\)-center problem on a tree. SIAM J Matrix Anal Appl 1(4):370–375

    MathSciNet  MATH  Google Scholar 

  • Chen B, Lin C (1998) Minmax-regret robust 1-median location on a tree. Networks 31(2):93–103

    Article  MathSciNet  Google Scholar 

  • Church RL, Garfinkel RS (1978) Locating an obnoxious facility on a network. Transp Sci 12(2):107–118

    Article  MathSciNet  Google Scholar 

  • Conde E (2008) A note on the minmax regret centdian location on trees. Oper Res Lett 36(2):271–275

    Article  MathSciNet  Google Scholar 

  • Ding W, Xue G (2011) A linear time algorithm for computing a most reliable source on a tree network with faulty nodes. Theor Comput Sci 412(3):225–232

    Article  MathSciNet  Google Scholar 

  • Ding W, Zhou Y, Chen GT, Wang HF, Wang GM (2013) On the 2-MRS problem in a tree with unreliable edges. J Appl Math 2013:743908:1–743908:11

    MathSciNet  Google Scholar 

  • Eisenbrand F, Grandoni F, Rothvoß T, Schäfer G (2010) Connected facility location via random facility sampling and core detouring. J Comput Syst Sci 76(8):709–726

    Article  MathSciNet  Google Scholar 

  • Erkut E, Francis RL, Tamir A (1992) Distance-constrained multifacility minimax location problems on tree networks. Networks 22(1):37–54

    Article  MathSciNet  Google Scholar 

  • Frederickson GN (1991) Parametric search and locating supply centers in trees. In: Proceedings of 2nd WADS, LNCS 519, pp 299–319

  • Frederickson GN, Johnson DB (1983) Finding \(k\)th paths and \(p\)-centers by generating and searching good data structures. J Algorithms 4(1):61–80

    Article  MathSciNet  Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. Freeman, San Francisco

    MATH  Google Scholar 

  • Goldman AJ (1971) Optimal center location in simple networks. Transp Sci 5(2):212–221

    Article  MathSciNet  Google Scholar 

  • Gupta A, Kleinberg J, Kumar A, Rastogi R, Yener B (2001) Provisioning a virtual private network: a network design problem for multicommodity flow. In: Proceedings of 33rd STOC, pp 389–398

  • Gupta A, Kumar A, Roughgarden T (2003) Simpler and better approximation algorithms for network design. In: Proceedings of 35th STOC, pp 365–372

  • Gupta A, Srinivasan A, Tardos E (2004) Cost-sharing mechanisms for network design. In: Proceedings of 7th APPROX, LNCS 3122, pp 139–150

    Chapter  Google Scholar 

  • Handler GY (1973) Minimax location of a facility in an undirected tree graph. Transp Sci 7(3):287–293

    Article  MathSciNet  Google Scholar 

  • Hasan MK, Jung H, Chwa KY (2008) Approximation algorithms for connected facility location problems. J Comb Opt 16(2):155–172

    Article  MathSciNet  Google Scholar 

  • Hakimi SL, Schmeichel EF, Labbé M (1993) On locating path- or tree-shaped facilities on networks. Networks 23(6):543–555

    Article  MathSciNet  Google Scholar 

  • Jeger M, Kariv O (1985) Algorithms for fnding \(p\)-centers on a weighted tree (for relatively small \(p\)). Networks 15(3):381–389

    Article  MathSciNet  Google Scholar 

  • Jung H, Hasan MK, Chwa KY (2008) Improved primal-dual approximation algorithm for the connected facility location problem. In: Proceedings of 2nd COCOA, LNCS 5165, pp 265–277

  • Karger DR, Minkoff M (2000) Building Steiner trees with incomplete global knowledge. In: Proceedings of 41st FOCS, pp 613–623

  • Kariv O, Hakimi SL (1979) An algorithmic approach to network location problems. I: the \(p\)-centers. SIAM J Appl Math 37(3):513–538

    Article  MathSciNet  Google Scholar 

  • Kariv O, Hakimi SL (1979) An algorithmic approach to network location problems. II: the \(p\)-medians. SIAM J Appl Math 37(3):539–560

    Article  MathSciNet  Google Scholar 

  • Kim TU, Lowe TJ, Tamir A, Ward JE (1996) On the location of a tree-shaped facility. Networks 28(3):167–175

    Article  MathSciNet  Google Scholar 

  • Kouvelis P, Yu G (1997) Robust discrete optimization and its applications. Kluwer Academic Publishers, The Netherlands

    Book  Google Scholar 

  • Lazar A, Tamir A (2013) Improved algorithms for some competitive location centroid problems on paths, trees and graphs. Algorithmica 66(3):615–640

    Article  MathSciNet  Google Scholar 

  • Lee Y, Chiu SY, Ryan J (1996) A branch and cut algorithm for a Steiner tree-star problem. INFORMS J Comput 8(3):194–201

    Article  Google Scholar 

  • Ljubić I (2007) A hybrid VNS for connected facility location. Hybrid metaheuristics. In: LNCS 4771, pp 157–169

  • Megiddo N, Tamir A (1983) New results on the complexity of \(p\)-center problems. SIAM J Comput 12(4):751–758

    Article  MathSciNet  Google Scholar 

  • Megiddo N, Tamir A, Zemel E, Chandrasekaran R (1981) An \(O(n log^2 n)\) algorithm for the \(k\)-th longest path in a tree with applications to location problems. SIAM J Comput 10(2):328–337

    Article  MathSciNet  Google Scholar 

  • Melachrinoudis E, Helander ME (1996) A single facility location problem on a tree with unreliable edges. Networks 27(3):219–237

    Article  MathSciNet  Google Scholar 

  • Minieka E (1985) The optimal location of a path or tree in a tree network. Networks 15(3):309–321

    Article  MathSciNet  Google Scholar 

  • Morgan CA, Slater PL (1980) A linear time algorithm for a core of a tree. J Algorithms 1(3):247–258

    Article  MathSciNet  Google Scholar 

  • Puerto J, Ricca F, Scozzari A (2011) Minimax regret path location on trees. Networks 58(2):147–158

    MathSciNet  MATH  Google Scholar 

  • Puerto J, Rodríguez-Chía AM, Tamir A, Pérez-Brito D (2006) The bi-criteria doubly weighted center-median path problem on a tree. Networks 47(4):237–247

    Article  MathSciNet  Google Scholar 

  • Puerto J, Tamir A, Mesa JA, Pérez-Brito D (2008) Center location problems on tree graphs with subtree-shaped customers. Discrete Appl Math 156(15):2890–2910

    Article  MathSciNet  Google Scholar 

  • Ravi R, Sinha A (2006) Approximation algorithms for problems combining facility location and network design. Oper Res 54(1):73–81

    Article  MathSciNet  Google Scholar 

  • Shier DR (1977) A min–max theorem for \(p\)-center problems on a tree. Transp Sci 11(3):243–252

    Article  Google Scholar 

  • Swamy C, Kumar A (2004) Primal-dual algorithms for connected facility location problems. Algorithmica 40(4):245–269

    Article  MathSciNet  Google Scholar 

  • Tamir A (2004) An improved algorithm for the distance constrained \(p\)-center location problem with mutual communication on tree networks. Networks 44(1):38–40

    Article  MathSciNet  Google Scholar 

  • Tamir A (2001) The \(k\)-centrum multi-facility location problem. Discrete Appl Math 109(3):293–307

    Article  MathSciNet  Google Scholar 

  • Tamir A (1998) Fully polynomial approximation schemes for locating a tree-shaped facility: a generalization of the Knapsack problem. Discrete Appl Math 87(1–3):229–243

    Article  MathSciNet  Google Scholar 

  • Tamir A (1996) An \(O(p n^2)\) algorithm for the \(p\)-median and related problems on tree graphs. Oper Res Lett 19(2):59–64

    Article  MathSciNet  Google Scholar 

  • Tamir A (1993) A unifying location model on tree graphs based on submodularity properties. Discrete Appl Math 47(3):275–283

    Article  MathSciNet  Google Scholar 

  • Tamir A (1993) The least element property of center location on tree networks with applications to distance and precedence constrained problems. Math Program 62(1–3):475–496

    Article  MathSciNet  Google Scholar 

  • Tamir A (1991) Obnoxious facility location on graphs. SIAM J Discrete Math 4(4):550–567

    Article  MathSciNet  Google Scholar 

  • Tamir A (1988) Improved complexity bounds for center location problems on networks by using dynamic data structures. SIAM J Discrete Math 1(3):377–396

    Article  MathSciNet  Google Scholar 

  • Tamir A, Lowe TJ (1992) The generalized \(p\)-forest problem on a tree network. Networks 22(3):217–230

    Article  MathSciNet  Google Scholar 

  • Tamir A, Pérez-Brito D, Moreno-Pérez JA (1998) A polynomial algorithm for the \(p\)-centdian problem on a tree. Networks 32(4):255–262

    Article  MathSciNet  Google Scholar 

  • Tamir A, Puerto J, Mesa JA, Rodríguez-Chía AM (2005) Conditional location of path and tree shaped facilities on trees. J Algorithms 56(1):50–75

    Article  MathSciNet  Google Scholar 

  • Tamir A, Puerto J, Pérez-Brito D (2002) The centdian subtree on tree networks. Discrete Appl Math 118(3):263–278

    Article  MathSciNet  Google Scholar 

  • Tamir A, Zemel E (1982) Locating centers on tree with discontinuos supply and demand regions. Math Oper Res 7(2):183–197

    Article  MathSciNet  Google Scholar 

  • Ting SS (1984) A linear-time algorithm for maxisum facility location on tree networks. Transp Sci 18(1):76–84

    Article  MathSciNet  Google Scholar 

  • Vairaktarakis GL, Kouvelis P (1999) Incorporation dynamic aspects and uncertainty in 1-median location problems. Nav Res Logist 46(2):147–168

    Article  MathSciNet  Google Scholar 

  • Vries S, Posner ME, Vohra RV (2007) Polyhedral properties of the \(k\)-median problem on a tree. Math Program 110(2):261–285

    Article  MathSciNet  Google Scholar 

  • Wang BF (2000) Efficient parallel algorithms for optimally locating a path and a tree of a specified length in a weighted tree network. J Algorithm 34(1):90–108

    Article  MathSciNet  Google Scholar 

  • Wang HL (2017) An optimal algorithm for the weighted backup 2-center problem on a tree. Algorithmica 77(2):426–439

    Article  MathSciNet  Google Scholar 

  • Xue G (1997) Linear time algorithms for computing the most reliable source on an unreliable tree network. Networks 30(1):37–45

    Article  MathSciNet  Google Scholar 

  • Ye JH, Wang BF (2015) On the minmax regret path median problem on trees. J Comput Syst Sci 81(7):1159–1170

    Article  MathSciNet  Google Scholar 

  • Yu HI, Lin TC, Wang BF (2008) Improved algorithms for the minmax-regret 1-center and 1-median problems. ACM Trans Algorithm 4(3):1–27

    Article  MathSciNet  Google Scholar 

  • Zhou Y, Ding W, Wang G, Chen GT (2015) An edge-turbulence algorithm for the 2-MRS problem on trees with unreliable edges. Asia Pac J Oper Res. https://doi.org/10.1142/S0217595915400102

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Ding.

Additional information

An extended abstract appears in the Proceedings of COCOA 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, W., Qiu, K. A quadratic time exact algorithm for continuous connected 2-facility location problem in trees. J Comb Optim 36, 1262–1298 (2018). https://doi.org/10.1007/s10878-017-0213-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-017-0213-2

Keywords

Navigation