Skip to main content
Log in

A simpler PTAS for connected k-path vertex cover in homogeneous wireless sensor network

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Because of its application in the field of security in wireless sensor networks, k-path vertex cover (\(\hbox {VCP}_k\)) has received a lot of attention in recent years. Given a graph \(G=(V,E)\), a vertex set \(C\subseteq V\) is a k-path vertex cover (\(\hbox {VCP}_k\)) of G if every path on k vertices has at least one vertex in C, and C is a connected k-path vertex cover of G (\(\hbox {CVCP}_k\)) if furthermore the subgraph of G induced by C is connected. A homogeneous wireless sensor network can be modeled as a unit disk graph. This paper presents a new PTAS for \(\hbox {MinCVCP}_k\) on unit disk graphs. Compared with previous PTAS given by Liu et al., our method not only simplifies the algorithm and reduces the time-complexity, but also simplifies the analysis by a large amount.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Björklund A, Husfeldt T, Kaski P, Koivisto AM. Narrow sieves for parameterized paths and packings, arXiv:1007.1161

  • Brešar B, Kardoš F, Katrenič J, Semaniš G (2011) Minimum \(k\)-path vertex cover. Discrete Appl Math 159:1189–1195

    Article  MathSciNet  MATH  Google Scholar 

  • Chang M, Chen L, Hung L, Rossmanith P, Su P (2016) Fixed-parameter algorithms for vertex cover \(P_3\). Discrete Optim 19:12–22

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng X, Huang X, Li D, Wu W, Du D (2003) A polynomial-time approximation scheme for the minimum-connected dominating set in ad hoc wireless networks. Networks 42(4):202–208

    Article  MathSciNet  MATH  Google Scholar 

  • Gao X, Wang W, Zhang Z, Zhu S, Wu W (2010) A PTAS for minimum \(d\)-hop connected dominating set in growth-bounded graphs. Optim Lett 4(3):321–333

    Article  MathSciNet  MATH  Google Scholar 

  • Hochbaum DS, Maass W (1985) Approximation schemes for covering and packing problems in image processing and VLSI. J ACM 32:130–136

    Article  MathSciNet  MATH  Google Scholar 

  • Li X, Zhang Z, Huang X (2016) Approximation algorithms for minimum (weight) connected \(k\)-path vertex cover. Discrete Appl Math 205:101–108

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Q, Li X, Wu L, Du H, Zhang Z, Wu W, Hu X, Xu Y (2012) A new proof for Zassenhaus–Groemer–Oler inequality. Discrete Math Algorithms Appl 4(2):1250014

    Article  MathSciNet  MATH  Google Scholar 

  • Liu X, Lu H, Wang W, Wu W (2013) PTAS for the minimum \(k\)-path connected vertex cover problem in unit disk graphs. J Glob Optim 56:449–458

    Article  MathSciNet  MATH  Google Scholar 

  • Novotny M (2010) Design and analysis of a generalized canvas protocol. In: Proceedings of WISTP 2010, in: LNCS 6033:106–121

  • Oler N (1961) An inequality in the geometry of numbers. Acta Math. 105:19–48

    Article  MathSciNet  MATH  Google Scholar 

  • Tu J, Zhou W (2011) A factor 2 approximation algorithm for the vertex cover \(P_{3}\) problem. Inf. Process. Lett. 111:683–686

    Article  MATH  Google Scholar 

  • Tu J, Zhou W (2011) A primal-dual approximation algorithm for the vertex cover \(P_3\) problem. Theor Comput Sci 412:7044–7048

    Article  MATH  Google Scholar 

  • Wang W, Kim D, Sohaee N, Ma C, Wu W (2009) A PTAS for minimum \(d\)-hop underwater sink placement problem in 2-D underwater sensor networks. Discrete Math Algorithms Appl 1(2):283–289

    Article  MathSciNet  MATH  Google Scholar 

  • Wang L, Zhang X, Zhang Z, Broersma H (2015) A PTAS for the minimum weight connected vertex cover \(P_3\) problem on unit disk graphs. Theor Comput Sci 571:58–66

    Article  MATH  Google Scholar 

  • Wang L, Du W, Zhang Z, Zhang X (2017) A PTAS for minimum weighted connected vertex cover \(P_3\) problem in 3-dimensional wireless sensor networks. J Comb Optim 33:106–122

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Z, Gao X, Wu W, Du D (2009) A PTAS for minimum connected dominating set in 3-dimensional wireless sensor networks. J Glob Optim 45(3):451–458

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Z, Li X, Shi Y, Nie H, Zhu Y (2017) PTAS for minimum \(k\)-path vertex cover in ball graph. Inf Process Lett 119:9–13

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by NSFC (11771013, 11531011, 61502431).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Huang, X. & Zhang, Z. A simpler PTAS for connected k-path vertex cover in homogeneous wireless sensor network. J Comb Optim 36, 35–43 (2018). https://doi.org/10.1007/s10878-018-0283-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-018-0283-9

Keywords