Skip to main content
Log in

Random walk’s correlation function for multi-objective NK landscapes and quadratic assignment problem

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

The random walk’ correlation matrix of multi-objective combinatorial optimization problems utilizes both local structure and general statistics of the objective functions. Reckoning time of correlation, or the random walk of lag 0, is quadratic in problem size L and number of objectives D. The computational complexity of the correlation coefficients of mNK is \(O(D^2 K^2 L)\), and of mQAP is \(O(D^2 L^2)\), where K is the number of interacting bits. To compute the random walk of a lag larger than 0, we employ a weighted graph Laplacian that associates a mutation operator with the difference in the objective function. We calculate the expected objective vector of a neighbourhood function and the eigenvalues of the corresponding transition matrix. The computational complexity of random walk’s correlation coefficients is polynomial with the problem size L and the number of objectives D. The computational effort of the random walks correlation coefficients of mNK is \(O(2^K L D^2)\), whereas of mQAP is \(O(L^6 D^2)\). Numerical examples demonstrate the utilization of these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aguirre HE, Tanaka K (2007) Working principles, behavior, and performance of MOEAs on MNK-landscapes. Eur J Oper Res 181(3):1670–1690

    Article  MATH  Google Scholar 

  • Aleti A, Moser I, Grunske L (2017) Analysing the fitness landscape of search-based software testing problems. Autom Softw Eng 24(3):603–621

    Article  Google Scholar 

  • Alyahya K, Rowe JE (2019) Landscape analysis of a class of NP-hard binary packing problems. Evol Comput 27(1):47–73

    Article  Google Scholar 

  • Angel E, Zissimopoulos V (2002) On the hardness of the quadratic assignment problem with metaheuristics. J Heuristics 8(4):399–414

    Article  Google Scholar 

  • Barnes JW, Dimova B, Dokov SP, Solomon A (2003) The theory of elementary landscapes. Appl Math Lett 16(3):337–343

    Article  MathSciNet  MATH  Google Scholar 

  • Basseur M, Goeffon A (2015) Climbing combinatorial fitness landscapes. Appl Soft Comput 30:688–704

    Article  Google Scholar 

  • Biyikoglu T, Leydold J, Stadler PF (2007) Laplacian eigenvectors of graphs: Perron–Frobenius and Faber–Krahn type theorems. Springer, New York

    Book  MATH  Google Scholar 

  • Blot A, Hoos HH, Kessaci ME, Jourdan L (2018) Automatic configuration of bi-objective optimisation algorithms: impact of correlation between objectives. In: International conference on tools with artificial intelligence (ICTAI). IEEE, pp 571–578

  • Cela E (1997) The quadratic assignment problem. Springer, Dordrecht

    MATH  Google Scholar 

  • Cheng R, Li M, Li K, Yao X (2017) Evolutionary multiobjective optimization based multimodal optimization: fitness landscape approximation and peak detection. Trans Evol Comput. IEEE

  • Chicano F, Whitley LD, Alba E (2011) A methodology to find the elementary landscape decomposition of combinatorial optimization problems. Evol Comput 19(4):597–637

    Article  Google Scholar 

  • Chicano F, Luque G, Alba E (2012) Autocorrelation measures for the quadratic assignment problem. Appl Math Lett 25(4):698–705

    Article  MathSciNet  MATH  Google Scholar 

  • Chung FRK (1994) Spectral graph theory, vol. 92. CBMS

  • Daolio F, Liefooghe A, Verel S, Aguirre HE, Tanaka K (2015) Global vs local search on multi-objective NK-landscapes: contrasting the impact of problem features. In: Conference on genetic and evolutionary computation (GECCO). ACM, pp 369–376

  • Daolio F, Liefooghe A, Verel S, Aguirre HE, Tanaka K (2017) Problem features versus algorithm performance on rugged multiobjective combinatorial fitness landscapes. Evol Comput 25(4). MIT

    Article  Google Scholar 

  • Das KC (2004) The Laplacian spectrum of a graph. Comput Math Appl 48:715–724

    Article  MathSciNet  MATH  Google Scholar 

  • Draskoczy B (2010) Fitness distance correlation and search space analysis for permutation based problems. Evolutionary Computation in Combinatorial Optimization EvoCOP, pp 47–58. Springer

  • Ehrgott M (2005) Multicriteria optimization. Springer, Berlin

    MATH  Google Scholar 

  • Fontana W, Stadler PF, Bornberg-Bauer EG, Griesmacher T, Hofacker IL, Tacker M, Tarazona P, Weinberger ED, Schuster P (1993) RNA folding and combinatory landscapes. Phys Rev E 47(3):20–83

    Article  Google Scholar 

  • Garrett JD (2008) Multiobjective fitness landscape analysis and the design of effective memetic algorithms. Ph.D. thesis, University of Memphis

  • Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput OR 13(5):533–549

    Article  MathSciNet  MATH  Google Scholar 

  • Happel R, Stadler PF (1996) Canonical approximation of fitness landscapes. Complexity 2(1):53–58

    Article  Google Scholar 

  • Herrmann S, Ochoa G, Rothlauf F (2016) Coarse-grained barrier trees of fitness landscapes. Parallel problem solving from nature—PPSN XIV, pp 901–910

  • Horn RA, Johnson CR (2013) Matrix analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, Oxford

    Google Scholar 

  • Kauffman S, Weinberger E (1989) The NK model of rugged fitness landscapes and its application to the maturation of the immune response. J Theor Biol 141(2):211–245

    Article  Google Scholar 

  • Knowles JD, Corne D (2003) Instance generators and test suites for the multiobjective quadratic assignment problem. Evolutionary multi-criterion optimization (EMO), pp 295–310

  • Koopmans T, Beckmann M (1957) Assignment problems and the location of economic activities. Econometrica 25(1):53–76

    Article  MathSciNet  MATH  Google Scholar 

  • Lankaites Pinheiro R, Landa-Silva D, Atkin J (2017) A technique based on trade-off maps to visualise and analyse relationships between objectives in optimisation problems. J Multi-Criteria Dec Anal 24(1–2):37–56

    Article  Google Scholar 

  • Li R, Emmerich MT, Eggermont J, Back T, Schutz M, Dijkstra J, Reiber JH (2013a) Mixed integer evolution strategies for parameter optimization. Evol Comput 21(1):29–64 MIT

    Article  Google Scholar 

  • Li J, Guo J-M, Shiu WC (2013b) On the second largest Laplacian eigenvalues of graphs. Linear Algebra Appl 438:2438–2446 Elsevier

    Article  MathSciNet  MATH  Google Scholar 

  • Liefooghe A, Derbel B, Verel S, Aguirre H, Tanaka K (2017) A fitness landscape analysis of Pareto local search on bi-objective permutation flowshop scheduling problems. Evolutionary multi-criterion optimization (EMO). Springer

  • Merz P (2004) Advanced fitness landscape analysis and the performance of memetic algorithms. Evol Comput 12(3):303–325 MIT

    Article  Google Scholar 

  • Mohar B (1991) The Laplacian spectrum of graphs. Graph theory, combinatorics, and applications, pp 871–898. Wiley

  • Moser I, Gheorghita M, Aleti A (2017) Identifying features of fitness landscapes and relating them to problem difficulty. Evol Comput 25(3):407–437 MIT

    Article  Google Scholar 

  • Pelikan M, Sastry K, Goldberg DE, Butz MV, Hauschild M (2009) Performance of evolutionary algorithms on NK landscapes with nearest neighbor interactions and tunable overlap. In: Conference on genetic and evolutionary computation GECCO. ACM, pp 851–858

  • Pitzer E, Beham A, Affenzeller M (2012) Generic hardness estimation using fitness and parameter landscapes applied to robust taboo search and the quadratic assignment problem. In: Conference on genetic and evolutionary computation GECCO. ACM, pp 393–400

  • Reidys CM, Stadler PF (2002) Combinatorial landscapes. SIAM Rev 44(1):3–54

    Article  MathSciNet  MATH  Google Scholar 

  • Smith-Miles K, Lopes L (2012) Measuring instance difficulty for combinatorial optimization problems. Comput OR 39(5):875–889

    Article  MathSciNet  MATH  Google Scholar 

  • Stadler PF (1996) Landscapes and their correlation functions. J Math Chem 20(1):1–45

    Article  MathSciNet  MATH  Google Scholar 

  • Sutton AM, Whitley LD, Howe AE (2012) Computing the moments of k-bounded pseudo-boolean functions over hamming spheres of arbitrary radius in polynomial time. Theor Comput Sci 425:58–74 Elsevier

    Article  MathSciNet  MATH  Google Scholar 

  • Tayarani-N MH, Prugel-Bennett A (2015) Quadratic assignment problem: a landscape analysis. Evol Intel 8(4):165–184 Springer

    Article  Google Scholar 

  • Thierens D (2010) the linkage tree genetic algorithm. Parallel Problem solving from nature—PPSN XI. Springer, pp 264–273

  • van Remortel P, Ceuppens J, Defaweux A, Lenaerts T, Manderick B (2003) Developmental effects on tuneable fitness landscapes. Evolvable systems: from biology to hardware. Springer, pp 117–128

  • Verel S, Collard P, Clergue M (2003) Where are bottlenecks in NK fitness landscapes? In: The congress on evolutionary computation, (CEC’03). IEEE, pp 273–280

  • Verel S, Liefooghe A, Jourdan L, Dhaenens C (2013) On the structure of multiobjective combinatorial search space: MNK-landscapes with correlated objectives. Eur J Oper Res (EJOR) 227(2):331–342 Elsevier

    Article  MathSciNet  Google Scholar 

  • Verel S, Daolio F, Ochoa G, Tomassini M (2018) Sampling local optima networks of large combinatorial search spaces: the QAP case. Parallel problem solving from nature—PPSN XV. Springer, pp 257–268

  • Weinberger ED (1996) NP completeness of Kauffman?s NK model, a tuneably rugged fitness landscape. Santa Fe Institute Technical Reports

  • Whitley D, Sutton AM, Ochoa G, Chicano F (2014) The component model for elementary landscapes and partial neighborhoods. Theor Comput Sci 545:59–75

    Article  MathSciNet  MATH  Google Scholar 

  • Wilks SS (1947) Mathematical statistics. Princeton University Press, Princeton

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madalina M. Drugan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drugan, M.M. Random walk’s correlation function for multi-objective NK landscapes and quadratic assignment problem. J Comb Optim 38, 1213–1262 (2019). https://doi.org/10.1007/s10878-019-00445-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-019-00445-7

Keywords

Navigation