Skip to main content
Log in

Searching and inferring colorful topological motifs in vertex-colored graphs

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

The analysis of biological networks allows the understanding of many biological processes, including the structure, function, interaction and evolutionary relationships of their components. One of the most important concepts in biological network analysis is that of network motifs, which are patterns of interconnections that occur in a given network at a frequency higher than expected in a random network. In this work we are interested in searching and inferring network motifs in a class of biological networks that can be represented by vertex-colored graphs. We show the computational complexity for many problems related to colorful topological motifs and present efficient algorithms for special cases. A colorful motif can be represented by a graph in which each vertex has a different color. We also present a probabilistic strategy to detect highly frequent motifs in vertex-colored graphs. Experiments on real data sets show that our algorithms are very competitive both in efficiency and in quality of the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Notice that this problem was proposed previously and was shown W[1]-hard Marx (2007). Despite of that, our NP-completeness proof is simple and straightforward.

  2. Our implementation, including documentation, compilation parameters and libraries used, can be found at http://simbio.wp.facom.ufms.br.

  3. http://go.princeton.edu/cgi-bin/GOTermFinder

  4. http://www.cs.tau.ac.il/~bnet/TORQUE_Input_format.htm

  5. http://igm.univ-mlv.fr/AlgoB/gramofone/

References

  • Araujo E, Stefanes MA (2013) Some results on topological colored motifs in metabolic networks. In: Proceedings of the BIBE, pp 1–5

  • Ashburner M et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29

    Article  Google Scholar 

  • Blin G, Sikora F, Vialette S (2010) GraMoFoNe: a cytoscape plugin for querying motifs without topology in protein-protein interactions networks. In: Proceedings of BICoB, pp 38–43

  • Boyle EI et al (2004) GO::TermFinder-open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20(18):3710–3715

    Article  Google Scholar 

  • Bruckner S et al (2010) Topology-free querying of protein interaction networks. J Comput Biol 17(3):237–252

    Article  MathSciNet  Google Scholar 

  • Caspi R et al (2016) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 44(D1):D471–80

    Article  Google Scholar 

  • Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms, 3rd edn. The MIT Press, Cambridge

    MATH  Google Scholar 

  • Dondi R, Fertin G, Vialette S (2011) Complexity issues in vertex-colored graph pattern matching. J Discrete Algorithms 9(1):82–99

    Article  MathSciNet  Google Scholar 

  • Dost B et al (2008) QNet: a tool for querying protein interaction networks. J Comput Biol 15(7):913–925

    Article  MathSciNet  Google Scholar 

  • Erdös P (1947) Some remarks on the theory of graphs. Bull Am Math Soc 53(4):292–294

    Article  MathSciNet  Google Scholar 

  • Fellows MR, Fertin G, Hermelin D, Vialette S (2007) Sharp tractability borderlines for finding connected motifs in vertex-colored graphs. In: Proceedings of ICALP, LNCS, vol 4596, pp 340–351

  • Fellows MR, Fertin G, Hermelin D, Vialette S (2011) Upper and lower bounds for finding connected motifs in vertex-colored graphs. J Comput Syst Sci 77(4):799–811

    Article  MathSciNet  Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman and Company, Murray Hill

    MATH  Google Scholar 

  • Guillemot S, Sikora F (2013) Finding and counting vertex-colored subtrees. Algorithmica 65:828–844

    Article  MathSciNet  Google Scholar 

  • Kashani ZRM et al (2009) Kavosh: a new algorithm for finding network motifs. BMC Bioinform 10:318

    Article  Google Scholar 

  • Kelley BP et al (2003) Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc Natl Acad Sci USA 100(20):11394–11399

    Article  Google Scholar 

  • Lacroix V, Cottret L, Thébault P, Sagot MF (2008) An introduction to metabolic networks and their structural analysis. IEEE/ACM Trans Comput Biol Bioinform 5(4):594–617

    Article  Google Scholar 

  • Lacroix V, Fernandes CG, Sagot MF (2005) Reaction motifs in metabolic networks. In: Proceedings of WABI, LNBI, vol 3692, pp 178–191

  • Lacroix V, Fernandes CG, Sagot MF (2006) Motif search in graphs: application to metabolic networks. IEEE/ACM Trans Comput Biol Bioinform 3(4):360–368

    Article  Google Scholar 

  • Maier D (1978) The complexity of some problems on subsequences and supersequences. JACM 25(2):322–336

    Article  MathSciNet  Google Scholar 

  • Marx D (2007) Can you beat treewidth? In: Proceedings of FOCS, pp 169–179

  • Pinter R, Shachnai H, Zehavi M (2016) Deterministic parameterized algorithms for the graph motif problem. Discrete Appl Math 213:162–178

    Article  MathSciNet  Google Scholar 

  • Pinter R, Zehavi M (2014) Algorithms for topology-free and alignment network queries. J Discrete Algorithms 27:29–53

    Article  MathSciNet  Google Scholar 

  • Rubert DP, Araujo E, Stefanes MA (2015) SIMBio: searching and inferring colorful motifs in biological networks. In: Proceedings of BIBE, pp 1–6

  • Schbath S, Lacroix V, Sagot MF (2009) Assessing the exceptionality of coloured motifs in networks. EURASIP J Bioinform Syst Biol Article ID 616234, 9 pages

  • Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31(1):64–68

    Article  Google Scholar 

  • Shlomi T, Segal D, Ruppin E, Sharan R (2006) QPath: a method for querying pathways in a protein–protein interaction network. BMC Bioinform 7:199

    Article  Google Scholar 

  • Wernicke S, Rasche F (2006) FANMOD: a tool for fast network motif detection. Bioinformatics 22(9):1152

    Article  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their careful reading of the manuscript and their many insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio V. Martinez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubert, D.P., Araujo, E., Stefanes, M.A. et al. Searching and inferring colorful topological motifs in vertex-colored graphs. J Comb Optim 40, 379–411 (2020). https://doi.org/10.1007/s10878-020-00590-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-020-00590-4

Keywords

Navigation