Skip to main content
Log in

A linear-time algorithm for weighted paired-domination on block graphs

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In a graph \(G = (V,E)\), a set \(S\subseteq V(G)\) is said to be a dominating set of G if every vertex not in S is adjacent to a vertex in S. Let G[S] denote the subgraph of G induced by a subset S of V(G). A dominating set S of G is called a paired-dominating set of G if the induced subgraph G[S] contains a perfect matching. Suppose that, for each \(v \in V(G)\), we have a weight w(v) specifying the cost for adding v to S. The weighted paired-domination problem is to find a paired-dominating set S whose total weights \(w(S) = \sum _{v \in S} {w(v)}\) is minimized. In this paper, we propose an \(O(n+m)\)-time algorithm for the weighted paired-domination problem on block graphs using dynamic programming, which strengthens the results in [Theoret Comput Sci 410(47–49):5063–5071, 2009] and [J Comb Optim 19(4):457–470, 2010]. Moreover, the algorithm can be completed in O(n) time if the block-cut-vertex structure of G is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aho AV, Hopcroft JE, Ullman JD (1974) The design and analysis of computer algorithms. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam

    MATH  Google Scholar 

  • Argiroffo GR, Bianchi SM, Lucarini Y, Wagler AK (2020) Linear-time algorithms for three domination-based separation problems in block graphs. Discrete Appl Math 281:6–41

    Article  MathSciNet  Google Scholar 

  • Banerjee S, Henning MA, Pradhan D (2020) Algorithmic results on double Roman domination in graphs. J Comb Optim 39(1):90–114

    Article  MathSciNet  Google Scholar 

  • Banerjee S, Keil JM, Pradhan D (2019) Perfect Roman domination in graphs. Theoret Comput Sci 796:1–21

    Article  MathSciNet  Google Scholar 

  • Chang GJ (1989) Total domination in block graphs. Oper Res Lett 8(1):53–57

    Article  MathSciNet  Google Scholar 

  • Chang GJ (2013) Algorithmic aspects of domination in graphs. In: Handbook of Combinatorial Optimization, pp 339–405. Springer-Verlag, New York, second edition

  • Chen L, Lu C, Zeng Z (2009) Hardness results and approximation algorithms for (weighted) paired-domination graphs. Theoret Comput Sci 410(47–49):5063–5071

    Article  MathSciNet  Google Scholar 

  • Chen L, Lu C, Zeng Z (2009) A linear-time algorithm for paired-domination problem in strongly chordal graphs. Inform Process Lett 110(1):20–23

    Article  MathSciNet  Google Scholar 

  • Chen L, Lu C, Zeng Z (2010) Labelling algorithms for paired-domination problems in block and interval graphs. J Comb Optim 19(4):457–470

    Article  MathSciNet  Google Scholar 

  • Cheng TCE, Kang L, Shan E (2009) A polynomial-time algorithm for the paired-domination problem on permutation graphs. Discrete Appl Math 157(2):262–271

    Article  MathSciNet  Google Scholar 

  • Goddard W, Henning MA (2013) Independent domination in graphs: a survey and recent results. Discrete Math 313(7):839–854

    Article  MathSciNet  Google Scholar 

  • Haynes T, Slater P (1998) Paired-domination in graphs. Networks 32:199–206

    Article  MathSciNet  Google Scholar 

  • Haynes TW, Hedetniemi ST, Slater PJ (1998) Domination in graphs: advanced topics. Marcel Dekker Inc., New York

    MATH  Google Scholar 

  • Haynes TW, Hedetniemi ST, Slater PJ (1998) Fundamentals of domination in graphs. Marcel Dekker Inc., New York

    MATH  Google Scholar 

  • Hedetniemi ST, Laskar RC (1990) Bibliography on domination in graphs and some basic definitions of domination parameters. Discrete Math 86(1–3):257–277

    Article  MathSciNet  Google Scholar 

  • Hedetniemi ST, Laskar RC (eds) (1991) Topics on domination. Annals of Discrete Mathematics. North-Holland Publishing Co., Amsterdam

  • Henning MA (2009) A survey of selected recent results on total domination in graphs. Discrete Math 309(1):32–63

    Article  MathSciNet  Google Scholar 

  • Henning MA, Pal S, Pradhan D (2019) The semitotal domination problem in block graphs. Discuss Math Graph Theory, 1–18

  • Henning MA, Pradhan D (2020) Algorithmic aspects of upper paired-domination in graphs. Theoret Comput Sci 804:98–114

    Article  MathSciNet  Google Scholar 

  • Hung R-W (2012) Linear-time algorithm for the paired-domination problem in convex bipartite graphs. Theory Comput Syst 50(4):721–738

    Article  MathSciNet  Google Scholar 

  • Kang L (2013) Variations of dominating set problem, 2nd edn. Handbook of Combinatorial Optimization. Springer-Verlag, New York, pp 3363–3394

    Google Scholar 

  • Kang L, Sohn MY, Cheng TCE (2004) Paired-domination in inflated graphs. Theor Comput Sci 320(2–3):485–494

    Article  MathSciNet  Google Scholar 

  • Lappas E, Nikolopoulos SD, Palios L (2009) An \(O(n)\)-time algorithm for the paired-domination problem on permutation graphs. In: Combinatorial algorithms, volume 5874 of Lecture Notes in Comput. Sci., pp 368–379. Springer, Berlin

  • Lappas E, Nikolopoulos SD, Palios L (2013) An \(O(n)\)-time algorithm for the paired domination problem on permutation graphs. European J Combin 34(3):593–608

    Article  MathSciNet  Google Scholar 

  • Lin C-C, Ku K-C, Hsu C-H (2020) Paired-domination problem on distance-hereditary graphs. Algorithmica 82(10):2809–2840

    Article  MathSciNet  Google Scholar 

  • Lin C-C, Tu H-L (2015) A linear-time algorithm for paired-domination on circular-arc graphs. Theoret Comput Sci 591:99–105

    Article  MathSciNet  Google Scholar 

  • Lu C, Wang B, Wang K, Wu Y (2019) Paired-domination in claw-free graphs with minimum degree at least three. Discrete Appl Math 257:250–259

    Article  MathSciNet  Google Scholar 

  • Panda BS, Pradhan D (2013) A linear time algorithm for computing a minimum paired-dominating set of a convex bipartite graph. Discrete Appl Math 161(12):1776–1783

    Article  MathSciNet  Google Scholar 

  • Panda BS, Pradhan D (2013) Minimum paired-dominating set in chordal bipartite graphs and perfect elimination bipartite graphs. J Comb Optim 26(4):770–785

    Article  MathSciNet  Google Scholar 

  • Pradhan D, Jha A (2018) On computing a minimum secure dominating set in block graphs. J Comb Optim 35(2):613–631

    Article  MathSciNet  Google Scholar 

  • Pradhan D, Panda BS (2019) Computing a minimum paired-dominating set in strongly orderable graphs. Discrete Appl Math 253:37–50

    Article  MathSciNet  Google Scholar 

  • Qiao H, Kang L, Cardei M, Du D-Z (2003) Paired-domination of trees. J Global Optim 25(1):43–54

    Article  MathSciNet  Google Scholar 

  • Xu G, Kang L, Shan E, Zhao M (2006) Power domination in block graphs. Theoret Comput Sci 359(1–3):299–305

    Article  MathSciNet  Google Scholar 

  • Yeh H-G, Chang GJ (1998) Weighted connected domination and Steiner trees in distance-hereditary graphs. Discrete Appl Math 87(1–3):245–253

    MathSciNet  MATH  Google Scholar 

  • Yen C-C, Lee RCT (1996) The weighted perfect domination problem and its variants. Discrete Appl Math 66(2):147–160

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Chi Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by the National Science Council under the Grant Nos. MOST-106-2221-E-019-014, and MOST-107-2221-E-019-016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CC., Hsieh, CY. & Mu, TY. A linear-time algorithm for weighted paired-domination on block graphs. J Comb Optim 44, 269–286 (2022). https://doi.org/10.1007/s10878-021-00767-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-021-00767-5

Keywords