Skip to main content
Log in

The upper bounds on the Steiner k-Wiener index in terms of minimum and maximum degrees

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

For \(k \in {\mathbb {N}},\) Ali et al. (Discrete Appl Math 160:1845-1850, 2012) introduce the Steiner k-Wiener index \(SW_{k}(G)=\sum _{S\in V(G)} d(S),\) where d(S) is the minimum size of a connected subgraph of G containing the vertices of S. The average Steiner k-distance \(\mu _{k}(G)\) of G is defined as \(\genfrac(){0.0pt}1{n}{k}^{-1} SW_{k}(G)\). In this paper, we give some upper bounds on \(SW_{k}(G)\) and \(\mu _{k}(G)\) in terms of minimum degree, maximum degree and girth in a triangle-free or a \(C_{4}\)-free graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All data included in this study are available upon request by contact with the authors.

References

  • Ali P, Dankelmann P, Mukwembi S (2012) Upper bounds on the Steiner diameter of a graph. Discrete Appl Math 160:1845–1850

    Article  MathSciNet  Google Scholar 

  • Chartrand G, Oellermann OR, Tian S, Zou HB (1989) Steiner distance in graphs. Casopis Pest Mat 114:399–410

    Article  MathSciNet  Google Scholar 

  • Dankelmann P (2019) The Steiner \(k\)-Wiener index of graphs with given minimum degree. Discrete Appl Math 268:35–43

    Article  MathSciNet  Google Scholar 

  • Dankelmann P, Oellermann OR, Swart HC (1996) The average Steiner distance of a graph. J Graph Theory 22:15–22

    Article  MathSciNet  Google Scholar 

  • Dankelmann P, Entringer RC (2000) Average distance, minimum degree, and spanning trees. J Graph Theory 33:1–13

    Article  MathSciNet  Google Scholar 

  • Doyle JK, Graver JE (1977) Mean distance in a graph. Discrete Math 7:147–154

    Article  MathSciNet  Google Scholar 

  • Dobrynin A, Entringer R, Gutman I (2001) Wiener index of trees: theory and application. Acta Appl Math 66:211–249

    Article  MathSciNet  Google Scholar 

  • Entringer R, Jackson D, Snyder D (1976) Distance in graphs. Czechoslovak Math J 26:283–296

    Article  Google Scholar 

  • Erdös P, Pach J, Pollack R, Tuza Z (1989) Radius, Diameter, and Minimum Degree. J Combin Theorey Ser B 47:73–79

    Article  MathSciNet  Google Scholar 

  • Gutman I, Cruz R, Rada J (2014) Wiener index of Eulerian graphs. Discrete Appl Math 162:247–250

    Article  MathSciNet  Google Scholar 

  • Gutman I, Furtula B, Li X (2015) Multicenter wiener indices and their applications. J Serb Chem Soc 80:1009–1017

    Article  Google Scholar 

  • Gutman I, Klav̌zar S, Mohar B (1997) Fifty years of the Wiener index. MATCH Commun Math Comput Chem 35:1–159

    MathSciNet  Google Scholar 

  • Hua H, Ning B (2017) Wiener index, Harary index and Hamiltonicity of graphs. MATCH Commun Math Comput Chem 78:153–162

    MathSciNet  MATH  Google Scholar 

  • Iranmanesh A, Kafrani AS, Khormali O (2011) A new version of hyper-Wiener index. MATCH Commun Math Comput Chem 65:113–122

    MathSciNet  MATH  Google Scholar 

  • Li X, Mao Y, Gutman I (2016) The Steiner Wiener index of a graph. Discuss Math Graph Theory 32:2455–465

    MathSciNet  MATH  Google Scholar 

  • Lin H, Song M (2016) On segment sequence and the Wiener index of trees. MATCH Commun Math Comput Chem 75:81–89

    MathSciNet  MATH  Google Scholar 

  • Lu L, Huang Q, Hou J, Chen X (2018) A sharp lower bound on Steiner Wiener index for trees with given diameter. Discrete Math 341:723–731

    Article  MathSciNet  Google Scholar 

  • Mao Y, Wang Z, Gutman I, Li H (2017) Nordhaus-Gaddum-type results for the Steiner Wiener index of graphs. Discrete Appl Math 219:167–175

    Article  MathSciNet  Google Scholar 

  • Mao Y, Wang Z, Gutman I (2016) Steiner wiener index of graph products. Trans Combin 5:39–50

    MathSciNet  MATH  Google Scholar 

  • Plesník J (1984) On the sum of all distances in a graph or digraph. J Graph Theory 8:1–24

    Article  MathSciNet  Google Scholar 

  • Zhang L, Wu B (2005) The Nordhaus-Gaddum-type inequalities for some chemical indices. MATCH Commun Math Comput Chem 54:189–194

    MathSciNet  MATH  Google Scholar 

  • Zhang J, Wang H, Zhang XD (2019) The Steiner Wiener index of trees with a given segment sequence. Appl Math Comput 344–345:20–29

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The first and second authors are supported by the Natural Science Foundation of Xinjiang Province, China (No. 2020D04046); The third author is supported by the National Natural Science Foundation of China (No. 12061073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jixiang Meng.

Ethics declarations

Conflict of interest

No conflict of interest exist in the submission of this manuscript, and manuscript is approved by all authors for publication. No known personal relationships could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research is supported by the Natural Science Foundation of Xinjiang Province, China (No. 2020D04046); National Natural Science Foundation of China (No. 12061073).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Meng, J. & Wu, B. The upper bounds on the Steiner k-Wiener index in terms of minimum and maximum degrees. J Comb Optim 44, 1199–1220 (2022). https://doi.org/10.1007/s10878-022-00887-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-022-00887-6

Keywords

Navigation