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Abstract
This study proposes a framework for the main parties of a sustainable supply chain
network considering lot-sizing impact with quantity discounts under disruption risk
among the first studies. The proposed problem differs from most studies considering
supplier selection and order allocation in this area. First, regarding the concept of
the triple bottom line, total cost, environmental emissions, and job opportunities are
considered to cover the criteria of sustainability. Second, the application of this supply
chain network is transformer production. Third, applying an economic order quantity
model lets our model have a smart inventory plan to control the uncertainties. Most
significantly, we present both centralized and decentralized optimization models to
cope with the considered problem. The proposed centralized model focuses on pric-
ing and inventory decisions of a supply chain networkwith a focus on supplier selection
and order allocation parts. This model is formulated by a scenario-based stochastic
mixed-integer non-linear programming approach. Our second model focuses on the
competition of suppliers based on the price of products with regard to sustainability.
In this regard, a Stackelberg game model is developed. Based on this comparison, we
can see that the sum of the costs for both levels is lower than the cost without the
bi-level approach. However, the computational time for the bi-level approach is more
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than for the centralized model. This means that the proposed optimization model can
better solve our problem to achieve a better solution than the centralized optimization
model. However, obtaining this better answer also requires more processing time. To
address both optimization models, a hybrid bio-inspired metaheuristic as the hybrid
of imperialist competitive algorithm (ICA) and particle swarm optimization (PSO)
is utilized. The proposed algorithm is compared with its individuals. All employed
optimizers have been tuned by the Taguchi method and validated by an exact solver in
small sizes. Numerical results show that striking similarities are observed between the
results of the algorithms, but the standard deviations of PSO and ICA–PSO show better
behavior. Furthermore, while PSO consumes less time among the metaheuristics, the
proposed hybrid metaheuristic named ICA–PSO shows more time computations in
all small instances. Finally, the provided results confirm the efficiency and the perfor-
mance of the proposed framework and the proposed hybrid metaheuristic algorithm.

Keywords Supplier selection · Quantity discount · Disruption risk · Lot sizing ·
Hybrid metaheuristic

1 Introduction

Nowadays, supplier selection is an active research topic in the researche done in the
supply chainmanagement (Golmohamadi et al. 2017). Ranking suppliers and selecting
the best methods increase the supply chain efficiency (Nourmohamadi Shalke et al.
2018; Hajiaghaei-Keshteli and Fathollahi Fard 2019). Moreover, supplier selection
methodologies open some new directions to consider new concepts such as disruption
risks. In this regard, considering supplier selection problems under disruption risk is
a new concept that aims to provide fast the emergency assembles for different levels
of the supply chain via injured people to minimize human suffering and death by
an efficient and performance allocations of supply chain levels due to its difficulty by
considering the budget of supporting companies and the restricted sources (Fathollahi-
Fard et al. 2018).

Generally, two types of uncertainties are existed i.e., operational and disasters. The
operational uncertainties relay to the structure of activities such as the time of ordering
and prices of products. But, disasters are a recent motivated issue which can be defined
as natural activities e.g. earthquakes, famine, floods, etc., imminent attacks of location
facility planning e.g. terrorism, war, etc., diseases e.g. malaria, HIV/aids or COVID-19
or other similar situations (Perfetti 2015). The rate of natural disasters is increasing
dramatically according to the growth of population, the global trends in urbanism,
land usage and stressing of ecosystems (Fard et al. 2017; Fard and Hajaghaei-Keshteli
2018).The ability of rescue units to perform a variety of operations are limited because
each rescue may be specialized in a particular type in the event of a disaster, planning
is efficient and appropriate challenging work for emergency operations centers. On the
other hand, how to manage time to perform operations and have a specialized team,
requires training and expertise of the rescue team (Tirkolaee et al. 2020a). Based
on this motivation, the supplier selection, and order allocation activities should be
reconsidered to provide a plan to control uncertainty.
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One of themost critical tasks during the supplier selection under disruption risk is to
manage and execute all the supplies and logistics operations more efficiently (Perfetti
2015); to deliver the essential supplies from vendors to all retailers and people who
need daily living supplies into the disaster areas (Akarte et al. 2007; Chang et al. 2012;
Dweiri et al. 2015; Mazdeh et al. 2015). Another main issue facing to the disasters
is when they do, they may entail devastating long-term economic and environmental,
and also social ramifications. Besides them, the companies and the suppliers should
consider that the recovery processes after disasters are very slow (Dweiri et al. 2015;
Mazdeh et al. 2015; Cheraghalipour and Farsad 2018; Jahre et al. 2007).

Additionally, some review articles are showing the state-of-the-art in this area from
different viewpoints including a general review on disruption risk in supply chain
systems (Jahre et al. 2007; Tirkolaee et al. 2020a) to identify appropriate measures in
different steps (phases) of disasters which are pre-disaster, during-disaster and post-
disaster (Lotfi et al. 2021). Overall, earlier studies mainly have recommended the
real-life constraints of disruption risks in the area of supplier selection studies.

As mentioned earlier, disruption is the type of real and non-planned uncertainty in
which it is required data is one of the main issues when designing any supply chain
network such as a supplier selection framework via lot sizing and other necessary
real assumptions (Lotfi et al. 2021; Soltanifar and Sharafi 2022; Samadi et al. 2018).
Notably, in the large-scale emergencies, data may not be available easily to com-
municate between the levels of supply systems (Fathollahi-Fard et al. 2018). Hence,
designing a robust optimization model by considering the uncertainty of parameters
and decision variables are so important. In this regard, scenario-based models are a
helpful tool to add the disruption and uncertainty of parameters and variables (Tirko-
laee et al. 2020a). Randomness and fuzziness are two main sources of uncertainty
(Fathollahi-Fard et al. 2018; Fard et al. 2017]). A scenario-based approach can flexi-
bility handle the uncertaintywith a consideration of optimistic, pessimistic and realistic
cases (Soltanifar and Sharafi 2022; Samadi et al. 2018; Wolpert and Macready 1997;
Ha et al. 2008; Tirkolaee et al. 2021; Sadeghi-Moghaddam et al. 2017). This study
applies a stochastic programming based different probabilistic scenarios to handle the
supplier selection and order allocation framework.

Most importantly, this study contributes to the pricing and inventory decisions to
cover operational activities in the supplier selection and order allocation parts with
regards to the sustainability. The triple bottom line concept is created by the sustain-
able development goals to address economic, environmental and social factors. The
proposed model includes three objectives to cover the total cost, the environmental
emissions and job opportunities. The economic sustainability is addressed by the total
cost of operational, pricing and inventory decisions in the supplier selection and order
allocation sections. The environmental sustainability is addressed by the carbon emis-
sions of transportation activities in the supply chain network. Finally, to achieve the
social sustainability, the job opportunities measure the social justice to have more
workers and to reduce the overtime.

Having a conclusion about the aforementioned contributions, this study intends
to understand how a sustainable supply chain network under disruption risk should
be managed. As such, this study mainly focuses on sudden-onset disasters that are
followed bymultiple related sub-disasters with a special attention to the logistics field.
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Using an economic order quantity (EOQ) model to improve the state of art for this
issue as the main contribution of this paper, considering lot sizing in supplier selection
and order allocation optimization problems and their possibilities of resolution for
operational, pricing, and inventory decisions, is developed. These decisions with the
goals of the total cost, environmental emissions, and job opportunities are formulated
by a scenario-based stochastic mixed-integer non-linear programming approach. All
of these contributions make a centralized decision-making.

This study also proposes a decentralized decision-making model to evaluate the
competition among suppliers based on the price of the products and sustainability
dimensions. In this regard, a Stackelberg game model is formulated as a decision-
making approach between different types of suppliers. To manage the complexity
of these optimization models, a hybrid metaheuristic benefits from the imperialist
competitive algorithm, and particle swarm optimization is proposed to cope with an
optimal solution in a reasonable time. To sum up, the main contributions of this study
are presented as follows:

• Proposing a novel mixed-integer non-linear stochastic programming approach in
the presence of multiple suppliers;

• Considering lot sizing for an order allocation optimization model;
• Developing a sustainable supply chain network considering the goals of the total
cost, environmental emissions, and job opportunities;

• Covering operational, pricing and inventory decisions in the framework of supplier
selection and order allocation;

• Proposing quantity discounts under disruption risk with the use of an EOQ model;
• Developing a decentralized decision-making approach to evaluate the competition
of suppliers for the price of products with discount supposition.

• Applying a new hybrid evolutionary algorithm based on the imperialist competitive
algorithm and particle swarm optimization for large-scale tests;

The rest of the directions of this paper can be organized as follows. The relevant
studies in this research are collected and reviewed in Sect. 2. The concept of supplier
selection and order allocation is prepared and accordingly, the sustainable supply chain
network design model considering lot sizing and quantity of discount under disruption
risk and its application to the transformer production is formulated as a centralized
decision-making model in Sect. 3. In this section, we also propose a decentralized
decision-making model to focus on the price of the products as the second model
using a Stackelberg optimization model. In addition, Sect. 4 provides the represen-
tation of answers and solution approaches by proposing a new hybrid metaheuristic.
The experimental results and different analyses for the case problem with different
complexity are performed in Sect. 5. Eventually, the recommendations and future
directions of this study are drawn in the final section of this study.

2 Literature review

The literature on supplier selection and order allocation is very old and many stud-
ies considered a variety of optimization models and multi-criterion decision-making
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approaches. As reviewed in a recent survey (Fard and Hajaghaei-Keshteli 2018), the
analytic hierarchy process (AHP) approach is the most common technique in this area
and more than 60 percent of studies have used the AHP model (Snyder and Daskin
2006; Hajiaghaei-Keshteli and Aminnayeri 2013; Atashpaz-Gargari and Lucas 2007;
Devika et al. 2014; Molla-Alizadeh-Zavardehi et al. 2016; Tavakkoli-Moghaddam
et al. 2016; Hajiaghaei-Keshteli et al. 2014; Önüt et al. 2009). Here, some impor-
tant and recent studies are reviewed. For example, Akarte et al. (2007) applied a
case study of the automobile manufacturing industry to rank the suppliers with the
AHP method. Chan et al. (2012) Among the first studies applied a robust optimiza-
tion model for the supplier selection and order allocation framework. Tirkolaee et al.
(2020b) proposed a mixed-integer linear programming (MILP) mathematical model
to formulate the green location allocation-inventory problem (LAIP) for collecting,
processing/disposal of municipal solid waste (MSW) considering pollution emissions.
They developed a comprehensive Methodology for designing an efficient MSWman-
agement system using a robust optimization approach to eliminate the uncertainty.
Dweiri et al. (2015) did several sensitivity analyses to reveal the real case of auto-
mobile manufacturing for an optimization model using an exact solver with GAMS
software. In another different study in 2015, Mazdeh et al. (2015) considered the
lot sizing impact in a supplier selection and order allocation framework in the first
studies. Since their model is much complex than the general version of supplier selec-
tion and order allocation optimization models, a heuristic algorithm was developed.
In addition, Nourmohamadi Shalke et al. (2018) for the first time proposed a sus-
tainable supplier selection considering the quantity discount. They offered a TOPSIS
method to rank the suppliers. In another relevant work, Cheraghalipour and Farsad
(2018) developed a bi-objective supplier selection and order allocation with a quan-
tity discount. They minimized the total cost and environmental pollution while the
social criteria were used to rank the suppliers. On the other hand, with competition
in the fields of production and services, many organizations try your products with
lower prices and higher quality providers. Tirkolaee et al. (2021) presented a green
supplier selection (GSS) problem in an area where there are several raw agri-food
materials and suppliers under uncertain conditions. The proposed method consists
of a novel integration of AHP and fuzzy TOPSIS (AHP- fuzzy TOPSIS) and robust
goal programming RGP approach. Appropriate configuration of agro-supply chains
becomes all the more critical issues owing to specific characteristics of agro-products.
Keshavarz-Ghorbani and Pasandideh (2021) developed a multi-product multi-period
MINLP model or an agro-supply chain contributing to purchase, facility location,
and transportation decisions. Since the adjusting the temperature conditions affects
the quality of the products and the result their useful life, this model determines the
appropriate temperature conditions based on a variety of products.

Multi-criteria decision models are widely used in supplier selection problems.
Recently, Rafigh et al. (2021b) presented the problem of supplier selection by con-
sidering green production, green transportation, and green logistics. With regard to
the game theory, they used a cooperative green supplier selection model. After creat-
ing the optimization model to consider the uncertainty, this cooperative game theory
model is established in a fuzzy environment. In this regard, a fuzzy rule-based (FRB)
system is deployed and the set of fuzzy IF–THEN rules is considered. The importance
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of the role of the supply chain in today’s world, ranking of suppliers is of particular
importance in the study of supply chain issues. For this purpose, Soltanifar and Sharafi
(2022) utilized the DEA technique. Basic DEAmodels are designed for positive inputs
and outputs, while the use of negative data is unavoidable in many real-world issues,
including supplier.

Safaeian et al., (2019) proposed a multi-objective supplier selection and order allo-
cation framework to consider four objectives simultaneously in a fuzzy environment.
They minimized the total cost while maximizing the service, quality and, reliability of
this supply chain. A non-dominated sorting genetic algorithm (NSGA-II) tuned by the
response surface method was handled to generate the non-dominated solutions. Feng
et al. (2019) developed a hybrid fuzzy grey TOPSIS to evaluate the supplier selec-
tion provided the supplier ranking for a manufacturing company in China. In order
to improve the risk evaluation and management of the fresh grape supply chain and
enhance the sustainable level of the supply chain, Jianying et al. (2021) applied a neu-
ral network to evaluate the risk of the fresh grape supply chain from the perspective
of sustainable development. Furthermore, three risk evaluation models respectively
based on of single BP and optimized BP (GA-BP and PSO-BP) neural networks were
constructed, trained, and tested, and the risk of the grape supply chain was evalu-
ated using the optimal model. For the case study of maritime ships, Liu et al. (2020)
proposed a green supplier selection to rank the suppliers of the ships with the use of
a green degree. They provided an integrated approach with the use of group fuzzy
entropy and cloud TOPSIS. Nezhadroshan et al. (2020) applied a fuzzy AHP and
DEMATEL approach to address a resilient supplier selection problem in the case of a
disaster in Mazandaran province.

More recently, the concept of resiliency and sustainability dimensions is highly
interested inmany studies. Fathollahi-Fard et al. (2020a) proposed stochastic program-
ming to address a resilient supply chain for a water distribution network. They applied
an improved Lagrangian heuristic to solve their optimization problem. Fathollahi-
Fard et al. (2020a) developed a novel multi-objective stochastic model for the design
of a closed-loop supply chain network by modeling all three sustainability dimen-
sions including economic, environmental, and social goals. They implemented the
concept of a sustainable closed loop supply chain for the application of ventilators
using a stochastic optimization model. The efficiency of the proposed model is tested
in an Iranian medical ventilator production and distribution network in the case of the
COVID-19 pandemic.

Karampour et al. (2020) proposed a green supplier selectionwith the use of a vendor
managed inventory contract. As a bi-objective optimization problem, multi-objective
Keshtel and red deer algorithms were used. At last but not least, Fathollahi-Fard et al.
(2020b) considered the economic, environmental, and social objectives for of a water
distribution network. An improved social engineering optimizer was used to solve this
multi-objective supply chain optimization problem.

Contrary to the previous works, although some studies (Nourmohamadi Shalke
et al. 2018; Cheraghalipour and Farsad 2018) considered supplier selection and order
allocation considering lot sizing and quantity discount, they did not add the economic
order quantity (EOQ) supposition in their model. On the other hand, Sustainability
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in supply chain management is an inescapable and controversial issue due to gov-
ernment legislation and the social responsibilities of the organizations. Rahimi et al.
(2019) developed a risk-averse sustainable multi-objective mathematical model in
order to design and plan a network of the supply chain under uncertainty by incorpo-
rating conditional value at risk (CVaR) into the basic configuration of the two-stage
stochastic programming. Jadidi et al. (2021) considered the joint pricing and sourc-
ing decision problem for a buyer purchasing a product from a set of suppliers who
offer quantity discounts. The buyer, in each period, had to determine retail price and
the order quantities from the suppliers therefore, model formulated as mixed-integer
nonlinear programming one, and solved it. Chen and Xu ( 2020) presented a differen-
tial game involving a fashion brand and a supplier. And they considered the level of
fashion and advertising afforded as factors affecting goodwill. Because the original
design (ODM) production strategy had become commonplace in the fashion sup-
ply chain. They constructed centralized and decentralized differential game models,
which in the model the demand for products was affected by goodwill, retail price
and promotion. Scheller et al. (2021) formulated an integrated master production and
recycling scheduling model for describing the production and recycling of lithium-ion
batteries. Optimization models are for the master recycling scheduling and the master
production scheduling for analyzing current decentralized decisions of the recycler
and remanufacturer.

Menon and Ravi (2021) purposed to investigate the factors that act as sustainabil-
ity enablers in the electronics industry. They examined seventeen important factors
affecting the stability of the electronic supply chain in India. These seventeen items
are included:

Top management commitment, government policies and legislations, availability
of funds/investment, research and development, state of the art technologies, materials
and processes, green purchasing, environment management systems, environmental
collaboration between supply chain partners, lean manufacturing practices, reverse
logistic practices reducing, reducing consumption of resources/energy, training and
literacy, culture related factors, human expertise, corporate social responsibility, health
and safety standards, green labeling and packaging. their paper helped to find the causal
factors for the implementationof sustainable supply chainmanagement. They analyzed
using the Grey-DEMATELmethod. Using renewable energy (RE) is faster growing by
each country. The managerial and designer of supply chain network design (SCND)
have to plan to apply RE in pillars of supply chain (SC). Lotfi et al. (2021) presented
resilience and sustainable SCND by considering RE (RSSCNDRE) for the first time.
A two-stage new robust stochastic optimization is embedded for RSSCNDRE. The
first stage locates facility location and RE and the second stage defines flow quantity
between SC components.

Singh Yadav et al. (2021) determined the economic impact of the Medicine indus-
try of the Coronavirus pandemic for aggravating items with a ramp-type demand
with inflation effects in two-warehouse storage devices and wastewater treatment
cost using PSO is developed. The effect of inflation was also considered due to the
different costs associated with Block-chain applying the economic impact of the coro-
navirus medicine industry inventory system and wastewater treatment costs using
PSO. Recently, researchers are paying attention to the issue of collection, recycling,
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and reproduction because this is important. Keshavarz-Ghorbani and Arshadi Kham-
seh (2021) presented the model with the repair process to improve the virtual age
of used products and integrate forward flow as a closed-loop supply chain (CLSC).
The products can be returned to the chain several times until they have the required
quality to be repaired. They proposed mixed-integer non-linear model and solved by
three metaheuristic algorithms: particle swarm optimization algorithm (PSO), genetic
algorithm (GA), invasive weeds optimization algorithm (IWO). Roozbeh Nia et al.
(2015) developed a multi-item economic order quantity (EOQ) model with shortage
for a single-buyer single-supplier supply chain under green vendor managed inven-
tory (VMI) policy. A hybrid genetic and imperialist competitive algorithm (HGA) was
employed to find a near-optimum solution of a nonlinear integer-programming (NIP)
with the objective of minimizing the total cost of the supply chain. Ma and Huang
(2019) presented the life cycle attributes of products into consideration and inves-
tigates the situation in which the manufacturer tended to invest in green innovation
and establish alliances with other supply chain members. They adopted to analyze
and compared the optimal decisions and profits of closed-loop supply chain (CLSC)
members as well as the efficiency of three green innovation alliance modes a two-
cycle CLSC consisting of one manufacturer, one retailer, and one-third party recycler,
Stackelberg game method.

This study also differs from other sustainable supply chain networks (Fathollahi-
Fard et al. 2020a, 2020b; Karampour et al. 2020) due to the application of transformer
production in the power electronic industry as well as different operational, pricing
and inventory decisions. The use of an EOQ model gives this option to the managers
to provide a modern inventory management during different periods. In addition to
the aforementioned contributions, this paper controls the uncertainty for unpredicted
events in the case of disaster. Therefore, the first optimization model as a central-
ized decision-making by proposing a novel Mixed Integer Non-Linear Programming
(MINLP) model aims to propose a sustainable supply chain framework with lot sizing
impact and quantity discount under disruption risks via focusing on the supplier selec-
tion and order allocation. Finally, we focus on the pricing decisions of the suppliers
to provide a competition among them using a Stackelberg game theory model based
on sustainability dimensions.

Moreover, to achieve the literature gaps, this study provides comprehensive liter-
ature in Table 1 by reviewing the latest papers in the recent decade. The literature
review is divided into six characteristics, i.e., the type of supply chain and its related
industry, type of discount, considering lot sizing and or disruption risk as well as the
solution methodology. Among these properties, the disruption risk is quite new in this
area, and this study is among the first studies proposing these uncertainty conditions
with an EOQ model which has not been considered in the aforementioned studies in
Table 1. As can be pointed, although there are several papers existing in the litera-
ture of supplier selection models, only a few studies contributed to the sustainability
and none of them has considered the disruption risk and mixed uncertainty in their
decision-making models. As far as we know, the benefits from an EOQ model for a
sustainable supply chain are not considered in the literature review. In a nutshell, the
main findings of Table 1 are summarized as follows:
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• This study applies a sustainable supply chain model and this type of supply chain
is quite new in comparison with the general and green systems.

• Most papers are employed a case study to verify the application of their proposed
problem in a specific industry.However, no study applied the transformer production
in the power electronics industry as a supply chain network.

• Most papers are maintained on the quantity discount of suppliers and only a few of
them are considered the exponential discount for the model;

• Only a few researches have been added the disruption risk into their model;
• More than 50% of papers have not considered the order allocation along with a
mathematical model, yet;

• As far as we know, no one of aforementioned papers did not use an EOQ model
with a contribution to the disruption risk and quantity discount.

• Using themetaheuristics are common in the literature review.However, an improved
approach may be needed to better solve this complex problem;

The mentioned literature and Table 1 show that less attention has been reported to
pricing and inventorydecisions aswell as lot sizingof emergency supplier selection and
order allocation based on the sustainability concept. In this regard, this study contrary
to previous works not only considers a sustainable supply chain network focusing on
the supplier selection and order allocation framework considering lot-sizing impact
but also adds the quantity discounts in this area.

3 Problem formulation

3.1 Proposed centralized decision-makingmodel

The proposed sustainable supply chain is applicable for transformer production. This
is because the transformer industry, such as the car tire and battery industries, is recy-
clable and can be implemented in a closed and stable supply chain. The raw materials
used in electrical transformers will not normally be reusable except for a number of
special components that can be recycled using special processes. Transformer products
will last an average of about 30 years.

The transformers are including three main components including core sheets, oil
and Cellulose insulation materials. Figure 1 shows the transformer and components.
It is important that using pricing policies, customers are willing to return old products
and replace them with new transformers that have less losses. The most important
parameter in final consumption in the transformer is the thickness of the core sheet.
The thinner the core sheets, energy losses are reduced. The thickness of the sheets is
usually 0.3 and 0.23. Recently, sheets with a thickness of 0.18 have entered the market
in Iran. The supply of these products in Iran usually have different difficulties as the
main suppliers are from international companies. In Iran, due to international sanctions
and politic issues, the supply of transformer production is faced with uncertainty and
disruption risks.

The aim of this section is to present a formulation for this problem considering lot
sizing impactwith quantity discount under disruption risk.This problemalso covers the
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Fig. 1 The transformer and its components

sustainability including economic, environmental and, social goals and, also applies
an EOQ model to have a smart inventory system (Scheller et al. 2021; Li and Chen
2019). The proposed model has been developed according to Mazdeh et al. (2015). In
addition, Fig. 2 shows a graphical example of this sustainable supply chain network

Fig. 2 Graphical of transformer sustainable supply chain network
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under disruption risks which includes transformer manufacturing with international
and national suppliers, which shows the different costs of the desired supply chain.

The indices, parameters and, decision variables are described as follows:
Indices

i Index of suppliers, i � {1, 2, . . . , n}, Is is the symbol of disrupted suppliers, and
I ′
s is also displayed the non-disrupted supplier

s Index of scenarios,s � {1, 2, . . . , 2n}
j Index of types of products, j � {1, 2, . . . , m}
ki Index of discount domain for supplier i,ki � {1, 2, . . . , KI }

Parameters

ai j The fixed ordering cost of product type j from supplier i
si j The fixed operating cost of product type j from supplier i
f j i The fixed job opportunities in the supplier i
eei j The environmental emissions for ordering product type j from supplier i
Ci j The manufacturing cost of product type j from supplier i
v j i j Variable job opportunities for the manufacturing of product type j from sup-

plier i
emi j The environmental emissions for manufacturing the product type j from

supplier i
Capi The capacity of supplier i
hbi The maintenance cost related to the purchased pieces from the supplier i
hv
i The maintenance cost of supplier i
D j The demand of markets for product type j
LOi jki The lower bound for a discount domain ki for supplier i and product type j
U Pi jki The upper bound for a discount domain ki for supplier i and product type j
wA
i jki

The purchasing cost of product type j from supplier i, when the price is in
the scope of discount domain ki (the case of general discount A)

w I
i jki

The purchasing cost of product type j from supplier i, when the price is
exactly within the bounds of the discount domain ki (the case of incremental
discount I )

wi j The purchasing cost of product type j from supplier i, when the case of no
discount exists

dN
i 1, if the case of no discount is existed in the supplier i.; otherwise 0
d A
i 1, if the case of general discount is existed in the supplier i; otherwise 0
d I
i 1, if the case of incremental discount is existed in the supplier i; otherwise 0

αi The probability of local disruption for supplier i
α∗ The probability of global disruption for all suppliers
δs The probability of disruption for scenario s
B j The cost of shortage for product type j
γ The weight of penalty for the objective function in the total cost

Decision variables

Q j Amount of ordering product type j
xi 1, if the supplier i is selected to supply the demands; otherwise 0
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ysi j A portion of demand for product type j from supplier i in scenario s should be
ordered

p′A
i jki

1, if the discount domain ki of supplier i is selected for product typej in the case
of general discount A; otherwise 0

p′I
i jki

1, if the discount domain ki of supplier i is selected for product typej in the
case of incremental discount I ; otherwise 0

usj Amount of non-supplied demands for product type j in scenario s
f asi jki An auxiliary variable of supplier i for product type j when the price is in the

scope of discount domain ki (the case of general discount) in scenario s
f i si jki An auxiliary variable of supplier i for product type j when the price is in the

scope of discount domain ki (the case of incremental discount) in scenario s

To consider the above notations, some assumptions should be considered to under-
stand the developed formulation. The main assumptions are as follows:

• Amount of U Pi j0 and LOi j0 are equaled to zero in the presumptions of model.
• U Pi jki−1 � LOi jki ∀i ∈ I , ki , U Pi jki � +∞
• dN

i + d A
i + d I

i � 1
• If a supplier doesn’t this ability to supply a piece or a product, the model considers
a big scalar number to eliminate the limits of this supplier.

• The shortages will be penalized.
• The purchaser after consuming the order supplied from supplier i, receives the order
from supplier i + 1.

• The proposed decision-making model considers a number of items, periods and
suppliers along with quantity discounts under disruption risks.

• The demand of each item in each period is independent, deterministic and known.
• The time of each period is finite.
• The unit purchase price of each supplier can be different.

Additionally, supplying the pieces and products is considered by the impact of
global and local probabilistic disruption. Each supplier personally is connected to
these disruptions. As mentioned earlier, the disruptions can be considered by different
natural events e.g. earthquake, famine, tsunami, cyclone, hurricane, flood and etc.,
imminent attacks on location facility planning e.g. terrorism, war, civil disorder and
etc., disease e.g. malaria or HIV/aids and a pandemic, such as the COVID-19 or
other similar situations (Perfetti 2015). Tirkolaee et al., (2020c) developed a novel
mixed-integer linear programming (MILP) model to formulate the sustainable multi-
trip location-routing problem with time windows (MTLRP-TW) for medical waste
management in the COVID-19 pandemic. To deal with the uncertainty, a fuzzy chance-
constrained programming approach was applied. Rafigh et al., (2021a) presented a
sustainable closed-loop supply chain under uncertainty to create a response to the
COVID-19 pandemic. Their article for the first time implements the concept of a
sustainable closed loop supply chain for the application of ventilators using a stochastic
optimization model. The efficiency of the proposed model was tested in an Iranian
medical ventilator production and distribution network in the case of the COVID-
19 pandemic. In this regard, please consider αi called as the probability of local
disruption for supplier i. In other words, it means the supplier can provide the pieces
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and products by the probability of 1 − αi and conversely the probability of αi means
that the disruption is existed for the supplier and the providing of pieces and products
have not been occurred (Castellano and Glock 2021; Chatterjee and Chaudhuri 2021).
Furthermore, please assume that δs is the probability of disruption for scenario s
including a personal subset of suppliers (Is ⊂ I) which are providing the pieces and
products without any disruption. Also, the set of s � {1, . . . , h} considers the whole
possibilities of scenarios. It should be noted that the total number of scenarios are
equaled as h � 2m .

The probability of local disruption is independent from others. Therefore, the prob-
ability of disruption under independent risks of local disruption can be estimated by
following the formula:

δs �
∏

i∈IS
(1 − αi )

∏

i /∈Is
αi (1)

Moreover, besides local disruption for each supplier, a global disruption for all
suppliers is possible in which thewhole of them aren’t available to supply any demand.
Also, most companies around the world have had severe supply chain disruptions
since the first wave of the epidemic. Lahyani et al. (2021) focused on how prepared
companies were when the second wave struck. Their study was about the impacts
of COVID-19 disruptions on Supply Chain Management during this second wave in
Saudi Arabia. Analyses were shown in the COVID-19 pandemic that companies were
expected to begin searching for a more diversified supplier base in the near term, thus
looking to build a versatile, but cost-effective, supply chain. Shifting supply chains
nearby, decreasing the suppliers’ base, and increasing the digitalization of supply
chains are essential tactics companies have to start committing to. Recent research
shows that natural disasters can cause global disruption. The probability of this event
may so less. But, itmay have very bad consequences. In this regard, please consider that
α∗ is the probability of global disruption for all suppliers at a same time. As discussed
earlier, global and local disruption is independent of each other. So, the probability of
δs for each disrupted scenario under risks for both disruptions is computed as follows:

δ∗
s �

⎧
⎪⎨

⎪⎩

(
1 − α∗)δs IS 
� φ

α∗ +
(
1 − α∗) ∏

i∈I
αi IS � φ (2)

According to the Eq. (2), if the probability of global disruption (α∗ � 0) is equated
to zero, this case leads to transform δ∗

s to δs by considering only local disruptions.
To satisfy how to calculate the amount of purchaser from suppliers, some formula-

tion has been proposed. First of all, an approach to consider the average of inventory
of purchaser is illustrated. To simplify the computations, the disruption risks have not
been considered. The average of inventory of purchaser during the order period from
supplier i, is varied from zero to Qi . Obviously, the order period is equaled to

Q
D . As a

result, the average of inventory for each purchaser in each unit of time received from
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supplier i, is estimated as the following formula:

I � 1/2 × Qi × Qi/D

Q/D
� Q2

i

2Q
� Qy2i

2
(3)

Also, the total cost of the purchaser according to the computed average of inventory
is:

cos tb �
m∑

j�1

∑

i∈I

D j

Q j
αi j xi +

∑

s∈S

∑

j∈J

∑

i∈IS
δ∗
s

Q j ys2i j h
b
i

2

+
∑

s∈S

∑

j∈J

∑

i∈Is
δ∗
s D j y

s
i jwi j d

N
i

+
∑

s∈S

∑

j∈J

∑

i∈Is

KI∑

ki�1

δ∗
s D j y

s
i jw

A
i j p

′A
i jki d

A
i

+
∑

s∈S

∑

j∈J

∑

i∈Is

∑

ki�1

δ∗
s

[
Dj y

s
i j − U Pi jki−1

) × w I
i jki

+
ki−1∑

k
′
i�0

(
U Pi jk′

i
− LOi jk

′
i

)
× w I

i jk
′
i

]
× p

′ I
i jki × d I

i (4)

Additionally, the cost of each supplier is calculated as follows:

cos tvi �
∑

j∈J

(
capiCi j +

Dj

Q j
Si j +

Q jcapi hv
i yi j

2Dj

)
Dj yi j
capi

(5)

Overall speaking, the total cost of the whole system is formulated as follows:

cos t sc � cos tb +
∑

s∈S
δ∗
s

∑

i∈Is
cos tvi

�
m∑

j�1

∑

i∈I

D j

Q j
αi j xi +

∑

s∈S

∑

j∈J

∑

i∈Is
δ∗
s

Q j ys2i j h
b
i

2

+
∑

s∈S

∑

j∈J

∑

i∈Is
δ∗
s D j y

s
i jwi j d

N
i +

∑

s∈S

∑

j∈J

∑

i∈Is

KI∑

ki�1

δ∗
s D j y

s
i jw

A
i jki p

′A
i jki d

A
i

+
∑

s∈S

∑

j∈J

∑

i∈Is

KI∑

ki�1

δ∗
s

[(
Dj y

s
i j −U Pi jki−1

)
× w I

i jki

+
Ki−1∑

k′
i�0

(
U Pi jk′

i
− LOi jk′

i

)
× w I

i jk′
i

]
× p′I

i jki × d I
i
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+
∑

s∈S

∑

i∈Is

∑

j∈J

δ∗
s Ci j D j y

s
i j +

∑

s∈S

∑

i∈Is

∑

j∈J

δ∗
s

D2
j y

s
i j

Q j capi
Si j

+
∑

s∈S

∑

i∈Is

∑

j∈J

δ∗
s

Q j ys2i j h
v
i

2
(6)

Regarding to Eq. (6), the proportion of formulation to Q j i s convex. So, Eq. (6) is
transformed into a derivative one and the new formulation is equaled to zero to find
the optimal amount of Q j

∂ cos t sc

∂Q j
� −

Dj
∑
i∈I

αi j xi

Q2
j

+

∑
s∈S

∑
i∈Is

δ∗
s y

s2
i j

(
hbi + hv

i

)

2
−

∑
s∈S

∑
i∈Is

δ∗
s
D2

j y
s
i j Si j

capi

Q2
j

� 0

⇒

∑
s∈S

∑
i∈Is

δ∗
s y

s2
i j

(
hbi + hv

i

)

2
�

Dj
∑
i∈I

αi j xi

Q2
j

+

∑
s∈S

∑
i∈Is

δ∗
s
D2

j Si j y
s
i j

capi

Q2
j

⇒ Q j �

√√√√√√√√

2Dj

(
∑
i∈I

αi j xi +
∑
s∈S

∑
i∈IS

δ∗
s
D j Si j ysi j
capi

)

∑
s∈S

∑
i∈Is

δ∗
s y

s2
i j

(
hbi + hv

i

) (7)

By replacing the new amount of Q j in the function of prof i t sc, the total cost of
the system is:

cos t sc �
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i (8)
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Eventually, the final formulation for the developed problem has been noted as
follows:

cos tsc � min(
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√√√√√2Dj
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enviormentsc � min

⎛
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s∈S

∑

i∈Is
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δ∗
s

(
eei + emi j
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j�1

δ∗
S

(
v ji j

)
ysi j

⎞

⎠ (11)

s.t

∑

i∈IS
ysi j + usj � 1 ∀s ∈ S, j ∈ J (12)

m∑

j�1

ysi j ≤ xi
capi
m∑
j�1

Dj

∀i ∈ Is , s ∈ S (13)

KI∑

ki�1

p′A
i jki � xi × d A

i ∀i ∈ I , j ∈ J (14)

ysi j × Dj ≤ U Pi jki + M
(
1 − p′A

i jki d
A
i

)
∀i ∈ Is , s ∈ S, j ∈ J , ki ∈ KI (15)

ysi j × Dj ≥ LOi jki − M
(
1 − p′A

i jki d
A
i

)
∀i ∈ Is , s ∈ S, j ∈ J , ki ∈ KI (16)

KI∑

ki�1

p′I
i jki � xi × d I

i ∀i ∈ I , j ∈ J (17)
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ysi j × Dj ≤ U Pi jki + M
(
1 − p′I

i jki d
I
i

)
∀i ∈ Is , s ∈ S, j ∈ J , ki ∈ KI (18)

ysi j × Dj ≥ LOi jki − M
(
1 − p′I

i jki d
I
i

)
∀i ∈ Is , s ∈ S, j ∈ J , ki ∈ KI (19)

xi , p
′I
i jki , p

′A
i jki ∈ {0, 1} ysi , u

s
j ≥ 0 ∀i ∈ Is , ∀s ∈ S (20)

The main objective function of the proposed Mixed-Integer Non-Linear Program-
ming (MINLP) model is justified by Eq. (9). The first objective function aims to
minimize the total cost of the system. Equation (10) is to minimize the environmental
emissions for operational and manufacturing activities in the system. Equation (11) is
to maximize the social benefits from fixed and variable job opportunities in this supply
chain network. Equations (12) to (20) is to present constraints of developed formu-
lation. First of all, Eq. (12) guarantees that the demand of the purchaser should be
supplied or considered as a shortage. Equation (13) ensures that the limitation of vari-
able capacity of suppliers is existed. In the other words, if the supplier is not selected,
any order is not allocated to it. Vice versa, if the supplier is selected to provide the
order, its capacity has been used to support the demand. Equations (14) to (16) are
to represent the discount domain of supplier to consider the case of general discount.
Similarly, Eqs. (17) to (19) are to consider the discount domain of supplier in the
case of incremental discount. To illustrate more in an example, Eq. (14) shows that
if a supplier by a general discount is selected, amount of order is only limited on the
defined discount domain of supplier. Equation (15) ensures that the volume of order
should be lower than the predefined upper bound. Conversely, Eq. (16) guarantees that
the volume of order should be higher than the predefined lower bound. Finally, the
continuous and binary variables are ensured by Eq. (20).

As can be envisaged at the first glance of the model, it is non-linear and non-convex.
Since the global solution is not available due to the situation of objective function.
The linearization of the objective function should be planned and changed by adding
more variables and constraints. Following changes are proposed to add to the general
formulation:

f asi jki � ysi j × p′A
i jki ∀i ∈ Is , s ∈ S, j ∈ J , ki ∈ KI (21)

f asi jki ≤ M × p′A
i jki ∀i ∈ Is , s ∈ S, j ∈ J , ki ∈ KI (22)

f asi jki ≤ ysi j ∀i ∈ Is , s ∈ S, j ∈ J , ki ∈ KI (23)

f asi jki ≥ ysi j − M ×
(
1 − p′A

i jki

)
∀i ∈ Is , s ∈ S, j ∈ J , ki ∈ KI (24)

f i si jki � ysi j × p′I
i jki ∀i ∈ Is , s ∈ S, j ∈ J , ki ∈ KI (25)

f i si jki ≤ M × p′I
i jki ∀i ∈ Is , s ∈ S, j ∈ J , ki ∈ KI (26)
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f i si jki ≤ ysi j ∀i ∈ Is , s ∈ S, j ∈ J , ki ∈ KI (27)

f i si jki ≥ ysi j − M ×
(
1 − p′I

i jki

)
∀i ∈ Is , s ∈ S, j ∈ J , ki ∈ KI (28)

Regarding to Eqs. (21) to (28), the final linear model is presented as follows:

cos t sc �
m∑

j�1

√√√√√2Dj

⎛

⎝
∑

i∈I
αi j xi +

∑

s∈S

∑

i∈Is
δ∗
s

D j Si j ysi j
capi

⎞

⎠

⎛

⎝
∑

s∈S

∑

i∈Is
δ∗
s y

s2
i j

(
hbi + hv

i

)
⎞

⎠

+
∑

s∈S

∑

i∈Is

m∑

j�1

δ∗
s Ci j D j y

s
i j +

∑

s∈S

∑

j∈J

∑

i∈Is
δ∗
s D j y

s
i jwi j d

N
i

+
∑

s∈S

∑

j∈J

∑

i∈Is

KI∑

ki�1

δ∗
s D j f a

s
i jki w

A
i jki d

A
i

+
∑

s∈S

∑

j∈J

∑

i∈Is

KI∑

ki�1

δ∗
s

[(
Dj f i

s
i jki −U Pi jki−1 × p′I

i jk′
i

)
× w I

i jki

+
ki−1∑

k′
i�1

(
U Pi jk′

i
− LOi jk′

i

)
× w I

i jk′
i
× p′I

i jk′
i

]
× d I

i +
m∑

j�1

∑

s∈S
δ∗
s D j B ju

s
j

(29)

enviormentsc � min

⎛

⎝
∑

s∈S

∑

i∈Is

m∑

j�1

δ∗
s

(
eei + emi j

)
ysi j

⎞

⎠ (30)

socialsc � max

⎛

⎝
∑

i∈I
f ji xi +

∑

s∈S

∑

i∈Is

m∑

j�1

δ∗
S

(
v ji j

)
ysi j

⎞

⎠ (31)

s.t.

∑

i∈IS
ysi j + usj � 1 ∀s ∈ S, j ∈ J (32)

m∑

j�1

ysi j ≤ xi
capi
m∑
j�1

Dj

∀i ∈ Is , s ∈ S (33)

KI∑

ki�1

p′A
i jki � xi × d A

i ∀i ∈ I , j ∈ J (34)

ysi j × Dj ≤ U Pi jki + M
(
1 − p′A

i jki d
A
i

)
∀i ∈ Is , s ∈ S, j ∈ J , ki ∈ KI (35)
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ysi j × Dj ≥ LOi jki − M
(
1 − p′A

i jki d
A
i

)
∀i ∈ Is , s ∈ S, j ∈ J , ki ∈ KI (36)

f asi jki ≤ M × p′A
i jki ∀i ∈ Is , s ∈ S, j ∈ J , ki ∈ KI (37)

f asi jki ≤ ysi j ∀i ∈ Is , s ∈ S, j ∈ J , ki ∈ KI (38)

f asi jki ≥ ysi j − M ×
(
1 − P ′A

i jki

)
∀i ∈ Is , s ∈ S, j ∈ J , ki ∈ KI (39)

KI∑

ki�1

p′I
i jki � xi × d I

i ∀i ∈ I , j ∈ J (40)

ysi j × Dj ≤ U Pi jki + M
(
1 − p′I

i jki d
I
i

)
∀i ∈ Is , s ∈ S, j ∈ J , ki ∈ KI (41)

ysi j × Dj ≥ LOi jki − M
(
1 − p′I

i jki d
I
i

)
∀i ∈ Is , s ∈ S, j ∈ J , ki ∈ KI (42)

f i si jki ≤ M × p′I
i jki ∀i ∈ Is , s ∈ S, j ∈ J , ki ∈ KI (43)

f i si jki ≤ ysi j ∀i ∈ Is , s ∈ S, j ∈ J , ki ∈ KI (44)

f i si jki ≥ ysi j − M ×
(
1 − P ′I

i jki

)
∀i ∈ Is , s ∈ S, j ∈ J , ki ∈ KI (45)

xi , p
′I
i jk′ , p′A

i jk′ ∈ {1, 0} ysi , u
s
j ≥ 0 ∀i ∈ Is , s ∈ S, j ∈ J , ki ∈ KI (46)

First of all, to handle the above model, it is transformed into a single objective
formulation to ease the computational of the model. In this regard, the goal attainment
approach is implemented. For the goal attainment method, the maximum diversion of
objectives from their goals is minimized by leveraging the developed model, as shown
below:

Indices:

min Z

s.t :

Wj Z ≥ b j − Q j

z, Q j ≥ 0

(47)

j Objective function

Q j Value of the jth objective function

bj Goal of the jth objective function

Wj Refers to the weight of the jth objective function
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where Qj is the value of the jth objective function, bj is the goal of the jth objective
function, and Wj refers to the weight of the jth objective function that has an inverse
relationship with the priority of the objectives. In this regard, Qj is equaled to the set
of {costsc, enviornmentsc, socialsc}.

3.2 Proposed decentralized decision-makingmodel

To consider the competition of prices between suppliers, assume that there are two
suppliers, one is a national supplier and another is an international supplier. With
regards to sustainability and environmental emissions, the green or emission level as
a decision variable is evaluated by the carbon emission tax procedure. The considered
demand function for sustainable and green parts depends on the carbon emissions
reduction level. To escape the unnecessary complexity of the nonlinear expressions,
the demand function can be formulated as Eq. (48). This form of demand function is
quite popular in the literature (Safaeian et al. 2019; Feng et al. 2019).

D � a − bp + me (48)

where in Eq. (48), a, b, andm are the potential size of the market, b, and m represent
the market sensitivity coefficients. Also, e and p are emission reduction and price of
the national supplier, respectively. The parameters’ and decision variables’ correla-
tions could be achieved by the presented demand linear formation nature and running
analytical investigations on them (Liu et al. 2020). Following the literature, the CE
reduction cost is considered as θe2. Consideration of this structure defines the invest-
ment of carbon reduction too. This approach to addressing the carbon emission cost
structure is a commonmethod as the body of the literature reveals (Nezhadroshan et al.
2020; Fathollahi-Fard et al. 2020a). Leading energy companies are facing a dilemma
regarding the emission abatement. Emissions pose costs including tax, environmental
fines and penalties, on the other hand, technological investments demand huge amount
of capital to be spend on reducing the emission rates of the fuels to be used in the
business process. Hopefully, the green preferences of the consumers come in favor
of the investments to be spent on this regard. Nevertheless, corporations and business
owners are compelled to follow the carbon regulations imposed by the governments.

In this model, the decentralized decision-making scenario is carried out to obtain
a win–win solution, motivating both members to decide in a coordinated mechanism.
The decisions are determined in the following order, first, the supply chain leader
(the international supplier) determines the emission abatement level and wholesale
price (in a decentralized structure), then the national supplier determines the price.
However, as the Stackelberg model is handled by the backward induction, this is the
retailerwhooptimizes its owndecision variable(s) and then the leader (the international
supplier) determines its decision variables. This structure is proposed as it is applicable
for the case of transformer production in Iran. In this industry, the main suppliers are
divided into two types, international and national suppliers. The international suppliers
are more important than the national suppliers as their decisions have a significant
impact on the decisions of national suppliers. It is because that most of components in
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this industry are supported by international suppliers. The national suppliers buy the
components and manufactured products from international suppliers.

The intended decision variables and parameters of the developed models are as
follows:

Decision variables

e The effort of Emission reduction
w The wholesale price of the manufacturer
p The selling price of the national supplier

Parameters

D The demand of consumer
a The size of the market
b The sensitivity coefficient of the price of national supplier
m The sensitivity coefficient of emission
e0 The initial production emission
c The production cost for the international supplier
t The carbon tax of government
θ The cost coefficient of emission reduction

In this instance, there is a Stackelberg game procedure. The leader of the channel
plays the international supplier or the upper stream role of the supply chain, while
the follower of the channel plays the national supplier or the lower stream of the
supply chain. The upper stream tries to maximize profit. On the other hand, the lower
stream follows his own maximum profit. One of the popular approaches to solve the
Stackelberg game procedure is backward induction. Equations (49) and (50) represent
the profit functions of the upper stream and the lower stream, respectively. These
Equations are developed based on the consumer’s demand function.

πd
m � [w − c − t(e0 − e)](a − bp + me) − θe2 (49)

πd
r � (p − w)(a − bp + me) (50)

By the maximization of Eq. (50), the movement of the retailer and his own price
can be determined. Afterward, by the maximization of Eq. (49), the decision variables
of the international supplier can be determined.

Theorem 1 By backward induction and under a decentralized decision-making sce-
nario the optimal closed-form of decision variables for the national supplier and the
upper stream of international supplier can be calculated as follows:

pd∗ � (m + bt)(cm + t(a + me0)) − 2θ(3a + b(c + te0))

(m + bt)2 − 8bθ
(51)

wd∗ � (m + bt)(cm + t(a + me0)) − 4θ(a + b(c + te0))

(m + bt)2 − 8bθ
(52)

ed∗ � (m + bt)(−a + b(c + te0))

(m + bt)2 − 8bθ
(53)
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Proof. Since ∂2πd
r

∂p2
� −2b < 0, the profit function of the national supplier in p is

concave for each e and w. p(w, e) � a+em+bw
2b can be achieved by the application

of the first order optimality condition ( ∂πd
r

∂p � 0). Also, the best response for the
international supplier can be calculated by some calculations and the application of
the best response of the national supplier into the profit function of the international
supplier. The proof is complete.

The supply chain’s and its members’ optimal profit function applying to Eqs. (49)
to (53) can be calculated as:

πd∗
r � 4bθ2(a − b(c + te0))2

(
(m + bt)2 − 8bθ

)2 (54)

πd∗
m � θ(a − b(c + te0))2

8bθ − (m + bt)2
(55)

πd∗
sc � θ(a − b(c + te0))2

(
12bθ − (m + bt)2

)

(
(m + bt)2 − 8bθ

)2 (56)

To determine the confliction of the channel, a mechanism is proposed in the Stack-
elberg model to set the international supplier (the upstream of the supply chain) for
making a division of the profits as known, a revenue sharing contract. In a revenue shar-
ing contract, the items are sold by the international supplier at a unit cost (wRS < c),
and also, a fraction α of the total revenue of the national supplier is received. The
constraint wRS < c guarantees the coordination of the channel. Furthermore, the dis-
tribution of profit among the supply chain members will be resolved by α according
to the following equations:

π RS
m � [(1 − α)p + wRS − c − t(e0 − e)](a − bp + me) − θe2 (57)

π RS
r � (αp − wRS)(a − bp + me) (58)

Necessary optimality condition ∂π RS
m

∂w
� 0, ∂π RS

m
∂e � 0, ∂π RS

r
∂p � 0 yields:

pRS∗
r � (m + bt)(cm + t(a + me0)) − 2θ(a + b(c + te0) + 2aα)

(m + bt)2 − 4bθ(1 + α)
(59)

wRS∗
m � α(m + bt)(cm + t(a + me0)) − 4αθ(b(c + te0) + aα)

(m + bt)2 − 4bθ(1 + α)
(60)

eRS∗
m � (m + bt)(b(c + te0) − a)

(m + bt)2 − 4bθ(1 + α)
(61)

π RS∗
r � 4bαθ2(a − b(c + te0))2

(
(m + bt)2 − 4b(1 + α)θ

)2 (62)
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π RS∗
m � θ(a − b(c + te0))2

4bθ(1 + α) − (m + bt)2
(63)

π RS∗
sc � θ(a − b(c + te0))2

(
4bθ(1 + 2α) − (m + bt)2

)

(
(m + bt)2 − 4b(1 + α)θ

)2 (64)

4 Proposed solution algorithm

For solving the centralized model, metaheuristic algorithms are applied. However,
for the decentralized model, the exact solver using GAMS software is used. This
section aims to offer a new hybrid ICA with considering the benefits of PSO to solve
the problem. The literature showed that the supplier selection is NP-hard (Samadi
et al. 2018). So, the metaheuristic is a proper approach when the size of the problem
increases. Regarding the No Free Lunch theory, there is no metaheuristic to solve
all optimization problems satisfactorily (Wolpert and Macready 1997). This means
that the current metaheuristics may need a set of modifications or hybridizations to
tackle such problemsmore efficiently (Hajiaghaei-Keshteli and Fathollahi Fard 2019).
This attempt motivates us to contribute a new hybrid metaheuristic by considering the
benefits of two well-known current algorithms i.e. ICA and PSO. Here, first of all, the
solution representation is illustrated. Then, ICA and PSO are explained individually.
Consequently, the proposed hybrid ICA-PSO is addressed in details.

4.1 Solution representation

Whenametaheuristic is employed to solve amathematical formulation, someencoding
and decoding procedures are needed to be illustrated (Tirkolaee et al. 2021; Zandieh
and Aslani 2019; Zhang et al. 2020; Vieira et al. 2020). A well-design of solution rep-
resentation leads that the solution timewould not be increased verymuch andwhole of
constraints should be considered in the solution representations (Sadeghi-Moghaddam
et al. 2017; Zhang et al. 2020). Hence, a two-stage technique, namely, Random-Key
(RK) has been utilized (Snyder and Daskin 2006). This technique showed its applica-
tions in different contents of engineering scopes e.g., scheduling (Hajiaghaei-Keshteli
and Aminnayeri 2013; Yu et al. 2021), supply chains (Fard et al. 2017); (Samadi et al.
2018), and transportation and cross-docking centers (Tirkolaee et al. 2021;Wang et al.
2020). In theRK , firstly, a solution ismade by randomnumbers and then this solution is
converted to a feasible discrete solution by a procedure (Fard and Hajaghaei-Keshteli
2018).

Additionally, there are two types of decision variables in this study i.e. continuous
variables (ysi , u

s
j ) and binary variables (xi , p

′ I
i jki

, p
′A
i jki

). In this regard, two different
procedures are needed, minimally. Figure 3 shows the considered RK technique for
choosing the suppliers and the type of discount. For instance, assume there are five
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1P 2P 3P 4P 5P
0.54 0.57 0.25 0.68 0.92

0 1 0 1 1

Step 1: Initialize the random numbers

Step 2: Transform to a feasible solution

Fig. 3 The used technique for selecting the suppliers

2P 4P 5P
Step 1: Initialize the random numbers 0.34 0.57 0.25

Step 2: Transform to a feasible solution 40.4 54.2 35

Fig. 4 The proposed RK utilizing in this paper for the amount of purchased products from the selected
supplier

suppliers (P1 to P5) and among them; three suppliers should be selected. So, a ran-
dom array distributed by U(0, 1) is generated. The higher amounts are decoded 1 for
variables and the rest of them should be equaled to zero.

As shown in Fig. 4, at first, similar to the last one, again a matrix with |n| elements
obtained by uniform distribution U(0, 1) is made. After, according to each element of
this array, the following formula is considered:

y
′′
i � yi × (U P − LO) + LO (65)

whereU P and LO are defined as the upper and lower bound of the amount of shipped
products from supplier i, respectively. Figure 4 shows an example with three selected
suppliers in which U P and LO are 80 and 20, respectively. All of these procedures
are the same in all the scenarios.

4.2 ICA

Atashpaz-Gargari and Lucas (2007) for the first time offered ICA inspired by social
developments. This metaheuristic is another evolutionary algorithm but instead of
natural evolution; it is considered the human social evolution (Golmohamadi et al.
2017). The literature of ICA is very rich. There are several studies to consider this
algorithm in different engineering applications. Since the ICA makes a robust inter-
action between the search phases i.e. exploration and exploitation (Wang et al. 2020;
Fathollahi-Fard et al. 2020c; Bicocchi et al. 2019). This motivated several scholars
to expand its applications and enhance the performance of ICA by generating some
new hybrid and modified versions of ICA (Devika et al. 2014). For instance, from
recent studies, Fathollahi Fard et al. (2017) employed ICA in a closed-loop supply
chain network design problem. Furthermore, Molla-Alizadeh-Zavardehi et al. (2016)
proposed a modified ICA for scheduling of single batch-processing machine problem
considering fuzzy due date. So, the steps of ICA are explained repeatedly in several
works. Hence, we present a summarized explanation of the structure of ICA as follows.
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Generate a population randomly named countries.
Evaluate the countries by the RK.
Initialize the empires and their colonies.
X*=the best solution.
it=1;
while (it< maximum number of iteration)

for each empire
Do the assimilation operator.
Compute the cost of assimilated countries by considering RK approach.
Perform revolution on new colony.
if the cost of new colony is less than cost of imperialist

Exchange the position of colony and imperialist.
endif
Pick the weakest colony (colonies) from the weakest empire. 
Assign it (them) to the empire that has most likelihood to posses it. 

endfor
if there is an imperialist with no colonies

Eliminate the imperialist.
endif
Update the X* if there is better solution.
it=it+1;

end while
return X*

Fig. 5 The pseudo-code of ICA

Generally, the counterpart of a solution in ICA is named as a country. Consequently,
the ICA divides the initial population into two groups i.e. empires and their colonies.
Originally, after forming the empires, an assimilation policy is considered for each
colony. Actually, the imperialists guide their colonies in some specific ways with
different characteristics to control them better. These properties include the language,
economy and culture and etc. In the ICA, this event has been occurred by moving the
colonies toward their imperialists. From another point of view, this step focuses on
the new regions in the neighboring of the imperialists and maintains both exploitation
and the exploration phases of the algorithm. After all, the new cost of colonies is
reassessed. If in an empire, a better cost has been found by one of colonies. The
positions of the imperialist and the colony will be exchanged. Then, revolution in a
percentage of colonies has been happened. Another step of ICA aims to calculate the
total power of each empire. The total power is depended on the cost of imperialist and
theweighted summation of its colonies. In addition to the total power of each empire, in
the weakest empire, one of the weakest colonies is selected. This colony will be given
to an empire which has themost verisimilitude to possess the colony. Consequently, an
empire which has no colonies should be eliminated. Finally, these sequences will be
repeated if the stop condition will be satisfied. The stopping circumstance can be the
maximum number of iterations or time or only one empire will be existed in the world.
To achieve more details about algorithm and its steps, a pseudo-code is provided as
depicted in Fig. 5.

4.3 PSO

PSO is a popular type of swarm intelligence approach. Thiswell-known and successful
metaheuristic was introduced firstly by Şenyiğit et al. (2013). Originally, the PSO is
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Set the parameters.
Generate initial particles (P).
According to the RK, evaluate the particles.
Form the initial Pareto optimal solutions.
it=1;
while (t< maximum number of iterations)

for each particle p in P
fp=f(p);
if fp is the better than pbest

pbest=p;
endif

endfor
gbest= best p in P;
for each particle p in P

v= w*v+c1*rand*(pbest-p)+c2*rand*(gbest-p);
p=p+v;
Calculate the fitness of particle p by RK approach;
Update the Pareto optimal solutions set;

endfor
w=w* ;
it=it+1;

endwhile
return gbest

α

Fig. 6 The pseudo-code of proposed PSO

inspired by the social behavior of bird flocking and or fish schooling.Also, it has shown
good performance in different engineering topics for current and new problems (Yu
et al. 2021; Wang et al. 2020; Fathollahi-Fard et al. 2020c; Bicocchi et al. 2019). For
instance, Tavakkoli-Moghaddam et al. (2016) showed a good performance of PSO
for an integrated production scheduling and air transportation problem. Furthermore,
Fathollahi Fard and Hajaghaei-Keshteli (2018) considered PSO for a new tri-level
location-allocation model for forward/reverse supply chain network design problem.
One of the main advantages of PSO is to consider the memory of requirements and
speed of particles (Hajiaghaei-Keshteli et al. 2014). In the PSO, particles are changed
according to the particle’s position and velocity. In addition, the PSO keeps the best
value of all particles as gbest and also saves the best particle in the neighboring of each
particle as pbest. To enhance the trade-offs between the exploitation and exploration
phases, this algorithm utilizes the weights of gbest and lbest to move each particle
(Fard et al. 2017). Figure 6 shows the pseudo-code of the proposed PSO.

4.4 Proposed hybrid ICA-PSO algorithm

Another novelty of this research is to introduce a new hybrid approach by employing
the benefits of both ICA and PSO in an integrated manner. The last decade has seen a
great performance of hybrid metaheuristics in several mathematical problems (Devika
et al. 2014). In the proposed idea, the ICA is themain loop and the PSO is considered to
improve the drawbacks of presented ICA. In the literature of ICA, several studies can
be found to maintain the assimilation operator to modify its search operator (Molla-
Alizadeh-Zavardehi et al. 2016). The properties of PSO are considered instead of
assimilation operator of ICA. So, by using the updating formula of PSO per iteration,
the colonies move toward their imperialist and the best imperialist in the world. To
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Generate a population randomly named countries.
Evaluate the countries by the RK.
Initialize the empires and their colonies.
X*=the best solution.
it=1;
while (it< maximum number of iteration)

for each empire
for each colony p

v= w*v+c1*rand*(X*-p)+c2*rand*(the empire-p);
p=p+v;

endfor
Compute the cost of assimilated countries by considering RK approach.
Perform revolution on new colony.
if the cost of new colony is less than cost of imperialist

Exchange the position of colony and imperialist.
endif
Pick the weakest colony (colonies) from the weakest empire. 
Assign it (them) to the empire that has most likelihood to posses it. 

endfor
if there is an imperialist with no colonies

Eliminate the imperialist.
endif
Update the X* if there is better solution.
w=w*α;
it=it+1;

end while
return X*

Fig. 7 The pseudo-code of hybrid ICA-PSO

the best of our knowledge, this study is among the first works to propose this idea to
improve the ICA. Note that the other steps of proposed hybrid algorithm are similar
to its original ICA as previously discussed in Sect. 4.2. To add more details about the
presented algorithm, a pseudo-code is addressed by Fig. 7.

5 Computational results

The computational results of proposed problem have been addressed in this section.
First of all, the instances of our problem in different complexities and difficulties are
generated. Then, the metaheuristics have been tuned by Taguchi experimental design
method. After that, the metaheuristics have been validated by exact solver in small
sizes. Finally, the extensive comparisonwithmetaheuristics in different criteria e.g. the
hitting time, the quality of solutions by considering the best, the worst and the average
as well as the standard deviation of metaheuristics during thirty run times and also
statistical analyses have been performed to find the best algorithm, efficiently. Finally,
some sensitivities are done to compare both centralized and decentralized models.
Note that for exact solver, the solution procedure is coded in GAMS23.4 optimization
software. In addition, all experiments have been done on an INTEL Core 2 CPU with
a 2.4 GHz processor and 2 GB of RAM.
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Table 2 Instances of problem

Level Number of problems Size (i, j, s, ki) Time (Seconds)

Small P1 (3, 5, 5, 3) 10

P2 (5, 8, 6, 4) 15

P3 (6, 10, 8, 4) 20

P4 (8, 10, 10, 6) 30

Medium P5 (12, 12, 10, 6) 50

P6 (14, 12, 10, 6) 60

P7 (18, 14, 14, 8) 70

P8 (20, 16, 14, 8) 75

Large P9 (22, 16, 18, 8) 90

P10 (24, 16, 18, 10) 100

P11 (24, 18, 20, 10) 110

P12 (26, 20, 20, 12) 120

5.1 Instances

The parameters of model are generated randomly by an approach benchmarked from
Mazdeh et al. (2015). The instances are classified in three levels i.e. small, medium and
large sizes. In each level, four test problems are generated. To be fair the comparison of
metaheuristics, the stopping condition is time interval according to the size of model.
Accordingly, the time of test problems increases while the size of problem increases
to consider a fair competition of algorithm. As a result, Table 2 provides these details
of test problems.

5.2 Calibrations of metaheuristics

When a metaheuristic is used to solve a mathematical model, it is needed to consider a
plan to calibrate themetaheuristics’ parameters (Fathollahi-Fard et al. 2020c; Bicocchi
et al. 2019). Here, Taguchi experimental design method is employed to achieve this
goal. Taguchi and Jugulum (2002) proposed this methodology to decrease the number
of experiments to assess the quality production management. Todays, this approach
has been considered by several metaheuristics’ papers to tune them, efficiently. There
are several recent papers employed this methodology to tune the metaheuristics e.g.
Tirkolaee et al. (2021), Sadeghi-Moghaddam et al. (2017) and Fard and Hajaghaei-
Keshteli (2018).

Accordingly, there are two main components to find the best value for each algo-
rithm parameter. Signal to noise (S/N) and relative percentage deviation (RPD) are two
metrics to control the quality of candidate values for algorithm’s parameters. Theses
parameters are called factors in this approach. Regarding to S/N, this indicates the
variation of response variables for factors. The higher value of S/N brings a better
capability of metaheuristics’ collaborations. In a minimization optimization model,
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Table 3 The list of parameters

Metaheuristic Factor Level

1 2 3

ICA A: nPop � number of countries 100 150 200

B: Nemp � number of empires 8 10 14

C: e � colonies mean cost coefficient 0.05 0.07 0.1

D: Pas � the rate of assimilation 0.2 0.3 0.4

E: Pr � the rate of revolution 0.05 0.1 0.15

PSO A: nPop � number of particles 100 150 200

B: W � inertia weight of particle 0.75 0.85 0.95

C: C1 � acceleration coefficient of local optimum 1.5 2 2.15

D: C2 � acceleration coefficient of global optimum 1.5 2 2.15

ICA-PSO A: nPop � number of countries 100 150 200

B: Nemp � number of empires 8 10 14

C: e � colonies mean cost coefficient 0.05 0.07 0.1

D: W � inertia weight of particle 0.75 0.85 0.95

E: C1 � acceleration coefficient of local optimum 1.5 2 2.15

F: C2 � acceleration coefficient of global optimum 1.5 2 2.15

G: Pr � the rate of revolution 0.05 0.1 0.15

S/N ratio is formulated as follows:

S/N � −10 log(objective− f unction)2

10 (66)

In eachmetaheuristic, for each factor,maximum three values are selected to examine
an optimal case of parameters. This information has been provided in Table 3.

Due to thirty run times of metaheuristics for each instance, RPDmetric is employed
to assess the performance of algorithms. Hence, this metric for a minimization opti-
mization model is formulated as follows:

RPD � A lgsol −Minsol
Minsol

(67)

where Minsol is the best solutions among all solutions and Algsol is the output of
algorithm. It is evident that the lower value of RPD brings better quality. Accordingly,
Taguchimethod based on the factors given in Table 3 for ICA and ICS-PSO has offered
L27 as the orthogonal arrays of methodology. Also, L9 has been proposed for PSO to
consider the trails of orthogonal arrays. In regards to S/N and RPD, Figs. 8, 9, 10, 11,
12 and 13 presents the behavior of algorithms in thesemetrics. Accordingly, the proper
value of parameters is evident. Finally, the best value for metaheuristics’ parameters
is given in Table 4.
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5.3 Validation of metaheuristics

In this part, the presented metaheuristics are validated by exact solver i.e. GAMS for
small sizes. The results are given in Table 5. Note that metaheuristics are run for thirty
times. So, the best, the worst, and the average of solutions along with the standard
deviation of outputs during thirty run times are noted in this table. Additionally, the
hitting time of metaheuristics is given in this table. The hitting time is the first time
that the best solution is ever found (Tavakkoli-Moghaddam et al. 2016). It brings the
convergence rate of algorithms.

From Table 5, although a surprising similarity between the results of algorithms
has been seen, the standard deviation of PSO for the two smallest test problems and
also ICA-PSO for the two last test problems in the table shows a strengthen behavior.
As a result, the proposed hybrid ICA-PSO is almost better than its individual ones.

Moreover, to validate the metaheuristics, the gap of solution is reached according
to the best solution found by GAMS. In this regard, the amount of gap is depicted by
Fig. 14. From this graph, ICA reveals a better performance in comparison with PSO
except in P4 test problem. Clearly, ICA-PSO shows the best behavior in this item and
generates a robust solution in comparisons with two other metaheuristics.
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The behavior of time computation of exact method and hitting time ofmetaheuristic
is provided in Fig. 15. It is evident that the time of exact solver by increasing the size
of model increases exponentially. From Fig. 15, the need of metaheuristic is can be
resulted for this problem. Furthermore, while PSO consumes the less time among the
metaheuristics, the proposed hybrid metaheuristic named ICA-PSO shows more time
computations in all of small instances.
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Table 4 The tuned values of
metaheuristics Metaheuristic Parameter Best level

ICA nPop 200

Nemp 10

e 0.1

Pas 0.4

Pr 0.15

PSO nPop 200

W 0.75

C1 2

C2 1.5

ICA-PSO nPop 200

Nemp 14

e 0.07

W 0.95

C1 2.15

C2 2.15

Pr 0.15

5.4 Comparison of obtainedmetaheuristics

This part aims to present a state of art comparison with metaheuristics by considering
different criteria e.g. the best and the worst and the average of solutions as well
as the standard deviation of outputs during thirty run times. Also, considering the
hitting time of metaheuristics along with the statistical analyses are performed to
highlight the performance of algorithms to achieve the best one. Accordingly, the
outputs of metaheuristics are noted in Table 6. Additionally, the convergence analysis
of algorithms has been examined by the hitting behavior of metaheuristics as shown
by Fig. 16. Moreover, Fig. 17 reveals the statistical analyses of metaheuristics based
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Table 5 The results of metaheuristics in small sizes

Solution method P1 P2 P3 P4

EX OUT 1284 1326 1439 1673

CPU 7.46 28.54 56.88 87.14

ICA B 1284 1389 1557 1739

W 1318 1449 1720 1855

OUT 1300 1411 1628.5 1792

STD 145 157 178 204

HT 6.74 8.58 10.68 13.74

GAP 0 0.047511 0.082001 0.03945

PSO B 1284 1405 1612 1699

W 1309 1512 1728 1753

OUT 1295 1455 1660 1716

STD 133 152 173 182

HT 5.37 9.48 10.99 12.01

GAP 0 0.059578 0.120222 0.015541

ICA-PSO B 1284 1326 1475 1710

W 1305 1428 1558 1833

OUT 1294 1370 1515 1771

STD 133 158 166 179

HT 5.89 12.37 14.83 16.95

GAP 0 0 0.025017 0.022116

The best values in each test are shown in bold
EX � exact; OUT � output; B � the best; W � the worst; STD � standard deviation; HT � hitting time
based on seconds; GAP � the deviation of best solution of metaheuristic from exact solution
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Fig. 14 The Gap behavior of metaheuristics
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Table 6 The comparison of obtained metaheuristics

Metaheuristic P5 P6 P7 P8 P9 P10 P11 P12

ICA B 1802 1987 2146 2466 2788 3187 3291 3455

W 2087 2057 2444 2609 2906 3435 3344 3732

OUT 1944 2022 2295 2537 2847 3311 3317 3593

STD 193 200 211 245 261 290 322 251

HT 39.68 38.16 48.63 55.78 60.19 70.33 79.82 88.15

PSO B 1833 2042 2317 2591 2688 2903 3215 3466

W 2026 2272 2518 2878 2974 3028 3400 3711

OUT 1925 2157 2415 2734 2831 2965 3307 3588

STD 199 224 257 288 299 299 337 328

HT 28.76 42.73 45.19 54.18 58.72 63.19 69.85 72.14

ICA-PSO B 1785 1958 2284 2476 2571 2816 3105 3366

W 1875 2232 2555 2613 2692 2893 3405 3662

OUT 1830 2095 2419 2544 2631 2854 3255 3514

STD 189 204 207 235 257 288 318 289

HT 39.12 46.82 49.88 52.17 56.18 59.64 66.23 64.23

The best values in each test are shown in bold

on RPD metric to highlight the performance of them to select the most efficient one
in this study.

From Table 6, it is evident that ICA-PSO finds the best values in most of the items.
But, in some instances e.g. P7 and P8, ICA shows a better performance. Conversely,
PSO is the weakest metaheuristic in most of the items.
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According to Fig. 16, by increasing the size of the problem, the behavior of meta-
heuristics has been changed. While the hybrid ICA-PSO has the highest hitting time
between P5 and P7, PSO reaches the best value in two sizes P5 and P7. After that,
ICA-PSO algorithm shows the best behavior in this item and has the lowest amount of
hitting time. Generally, ICA is the worst metaheuristic in this item. Vice versa, ICA-
PSO reveals an efficient behavior to assess the convergence rate of metaheuristics.
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Table 7 Comparison of centralized and decentralized decision-making models

Centralized model Decentralized model

The output of the
single-objective model

CPU time
(second)

Leader Follower CPU time
(second)

6.6629E+06 146.83 6.6418E+06 5.815E+03 206.85

From Fig. 17, it can be resulted that the proposed ICA-PSO has extremely better
than its individual metaheuristics. In summary, the hybrid ICA-PSO algorithm has
pros and cons as follows:

The advantages are:

• Employ the benefits of both ICA and PSO in an integrated manner.
• Consider ICA as the main loop and improve the drawbacks of using PSO.
• Use the updating formula of PSO per iteration, and move the colonies toward their
imperialist and the best imperialist in the world.

• The least Gap behavior of metaheuristics.
• Best result in the statistical analysis of metaheuristics in terms of RPD.

The disadvantages is:

• The hitting time of metaheuristic is high.

5.5 Comparison of centralized and decentralizedmodels

Here, we compare the centralized and decentralized decision-making models. The
results of this comparison, are reported in Table 7. In this table, we document the
results of solving the case instance as a decentralizedmodel andwithout this approach.
Based on this comparison, we can see that the sum of the costs for both levels is lower
than the cost without the bi-level approach. However, the computational time for the
bi-level approach is more than for the centralized model. This means that the proposed
optimization model can better solve our problem to achieve a better solution than the
centralized optimization model. However, obtaining this better answer also requires
more processing time.

6 Discussion and conclusion and future works

This paper addressed a supplier selection framework considering lot-sizing impact
with quantity discounts under disruptions risk by a new hybrid ICA and PSO for the
first time. Both centralized and decentralized decision-making models were created
to address the manufacturing and recycling of electronic products. A comprehen-
sive literature review was provided by maintaining on the researches during the last
decade. The details of the model and formulation are proposed and illustrated. Due
to the proposed model was a type of non-linear and non-convex for the objective
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function, a linearization of the formulation was developed and illustrated the replaced
decision variables and constraints. To address the problem, not only the exact solver
using by GAMS software was used but ICA and PSO were also hybridized with each
other to employ the benefits of them, efficiently. The test problems were generated
by benchmarked approach. The metaheuristics were compared with each other in dif-
ferent criteria. As a result, the proposed hybrid metaheuristic ICA-PSO showed the
best performance according to the results. Finally, a comparison of the centralized and
decentralized models was done to show that the decentralized model is more complex
than the centralized decision-makingmodel. However, the decentralizedmodel founds
a better solution.

According to the results obtained operationally and practically, it can be pointed out
that the selection of a supplier in the event of a disturbance is extremely important. And
perspectives is generated because there is uncertainty and supply disruption in supply
chain networks unpredictably. Generally, two types of uncertainties are existed i.e.,
operational and disasters. The operational uncertainties relay to structure of activities
such as the time of ordering and prices of products. But, disasters are a recent moti-
vated issue which can be defined as natural activities e.g. earthquake, famine, flood
etc., imminent attacks of location facility planning e.g. terrorism, war etc., disease e.g.
malaria, HIV/aids or COVID-19 or other similar situations like international sanc-
tions. Butwith the necessary planning, destructive economic, environmental and social
consequences can be largely avoided. The following main conclusions are yielded
according to the numerical results of this study:

(1) A novel MOMILP formulation was proposed considering lot-sizing impact with
quantity discounts under disruptions risk by a new hybrid ICA and PSO of trans-
former production.

(2) In the decentralized model, considering the price competition between suppliers,
one national supplier and the other international supplier about sustainability and
environmental emissions, the green level or emissions as a decision variable with
the carbon emission tax method was considered

(3) In a decentralized model of the Stackelberg game procedure used. The leader of
the channel plays the international supplier or the upper stream role of the supply
chain, while the follower of the channel plays the national supplier or the lower
stream of the supply chain. The upper stream tries to maximize profit.

(4) A real-life case study problem was implemented by a new hybrid ICA and PSO
for the first time. That the results were reported.

(5) The results demonstrated that the decentralized model is more complex than
the centralized decision model. However, the decentralized model finds a better
solution.

The issues raised are the ones that somehow turn the transformer production con-
ditions into an abnormal and uncertain situation. In fact, all supply chains from the
beginning of the production process, supply, sales, and even services affect the after-
sales crisis. Things that may occur include:

• Increase in shipping price (due to the remoteness of the geographical location of
the new supplier, exchange rate fluctuations, etc.)
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• Full payment before receiving the desired material or product (requires increasing
the amount of liquidity, increasing credit, etc.)

• Uncertainty about the delivery of a healthy product on time (Problems such as
breakage, defect during loading, etc.)

• Reducing the quality of the final product (due to non-cooperation of first-class
suppliers and the use of substandard raw materials, etc.)

• Loss of customers (due to low-quality products and rising prices of products due to
rising prices of raw materials and transportation, no customer request and even no
after-sales service and no guarantee of products provided to the customer)

Even cause lost sales.
Disruption risk affects managers and owners so much that it has led them to adopt

various policies. One of these policies can be the use of backup suppliers to provide
the choice of backup provider with problems and questions. Before deciding to choose
it, they should be answered:

• Can a new supplier that supports the previous supplier meet our standards?
• Does it have the necessary approvals to produce our product?
• Does it adapt to production processes?

Using the model presented in this article, suppliers can be internal and external and
selected.

On the other hand, with the pricing policy and the plan to return worn-out products,
and in exchange for delivering the product at a lower price, it introduced some products
that can be reused in certain industries into the production cycle and reproduced them
or re-produced them.

Disassembled and used some of their parts can consequently change the quality of
products and raise questions like this:

• Does the recycled product have the desired quality?
• Is it possible to achieve a product with the desired quality by using the existing
facilities?

• Are required the use of new technologies in production?
• Is it cost effective to use the recycling process in the industry?

Using the proposed model and the issue of pricing, a large part of the concerns of
managers and owners of capital can be answered.

Generally, this work can open several new directions for future works. For instance,
the proposed hybrid metaheuristic can be applied to solve other large-scale optimiza-
tion problems. In addition, other recent metaheuristics like the red deer algorithm or
social engineering optimizer, can be used for solving our optimization model in com-
parison with our metaheuristics. More intensive analyses on the considered risk model
are needed to be explored. The proposed mathematical can be expanded by other real
suppositions in this research area e.g. green and sustainable considerations can be
added into the proposed model. The vehicle routing operations can be considered by
different sizes of capacity to transform the products between suppliers and buyers.
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