Skip to main content
Log in

Demand forecasting and information sharing of a green supply chain considering data company

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

The effects of demand forecasting information (IDF) and information sharing on the pricing strategy and emission abatement decision-making in the green supply chain (GSC) are big concerns in this research. We consider a three-level GSC consisting of a data company (DC), a manufacturer and a retailer. DC can predict potential market demand and sell this information to the manufacturer as a product of data services. The manufacturer has the discretion to share IDF with a downstream retailer. By equilibrium analysis, we find that the manufacturer is reluctant to share IDF. When the information is not shared, the more accurate the IDF is, the more profits the manufacturer and DC will get, while the less profit the retailer will get. When information is shared, the profits of all participants increase with prediction accuracy. Moreover, the more accurate the prediction is, the higher the value that information sharing brings to the retailer, but the higher the loss of value to other supply chain members and the whole system. The supply chain system can always benefit from the IDF, which makes DC has the incentive to adopt scientific forecasting methods for demand forecasting in practice. Regarding emission abatement, we find that consumers’ preferences for green products always have a positive influence on the optimal decisions of GSC. Besides, the impacts do not depend on whether forecast information is shared. Thus, highlighting the low carbon preferences of consumers is crucial to the management decisions of the GSC in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

We claim that all data presented in this article is available.

References

  • Anand KS, Goyal M (2009) Strategic information management under leakage in a supply chain. Manage Sci 55:438–452

    MATH  Google Scholar 

  • Aslani A, Heydari J (2019) Transshipment contract for coordination of a green dual-channel supply chain under channel disruption. J Clean Prod 223:596–609

    Google Scholar 

  • Bray RL, Mendelson H (2012) Information transmission and the bullwhip effect: an empirical investigation. Manage Sci 58:860–875

    Google Scholar 

  • Chatfield DC, Kim JG, Harrison TP, Hayya JC (2004) The bullwhip effect—impact of stochastic lead time, information quality, and information sharing: a simulation study. Prod Oper Manag 13:340–353

    Google Scholar 

  • Chen F, Drezner Z, Ryan JK, Simchi-Levi D (2000) Quantifying the bullwhip effect in a simple supply chain: the impact of forecasting, lead times, and information. Manage Sci 46:436–443

    MATH  Google Scholar 

  • Chen H, Chiang RHL, Storey VC (2012) Business intelligence and analytics: from big data to big impact. MIS Q 36:1165–1188

    Google Scholar 

  • Chen H, Long R, Niu W, Feng Q, Yang R (2014) How does individual low-carbon consumption behavior occur?–an analysis based on attitude process. Appl Energy 116:376–386

    Google Scholar 

  • Gal-Or E (1985) Information sharing in oligopoly. Econ J Econ Soc pp 329–343

  • Gandomi A, Haider M (2015) Beyond the hype: big data concepts, methods, and analytics. Int J Inf Manage 35:137–144

    Google Scholar 

  • Hazen BT, Boone CA, Ezell JD, Allison Jones-Farmer L (2014) Data quality for data science, predictive analytics, and big data in supply chain management: an introduction to the problem and suggestions for research and applications. Int J Prod Econ 154:72–80

    Google Scholar 

  • Heydari J, Govindan K, Aslani A (2019) Pricing and greening decisions in a three-tier dual channel supply chain. Int J Prod Econ 217:185–196

    Google Scholar 

  • Hofmann E (2015) Big data and supply chain decisions: the impact of volume, variety and velocity properties on the bullwhip effect. Int J Prod Res 55:5108–5126

    Google Scholar 

  • Hosoda T, Disney SM, Gavirneni S (2015) The impact of information sharing, random yield, correlation, and lead times in closed loop supply chains. Eur J Oper Res 246:827–836

    MathSciNet  MATH  Google Scholar 

  • Jain A, Seshadri S, Sohoni M (2011) Differential pricing for information sharing under competition. Prod Oper Manag 20:235–252

    Google Scholar 

  • Jones R, Mendelson H (2011) Information goods vs. industrial goods: cost structure and competition. Manage Sci 57:164–176

    MATH  Google Scholar 

  • Kache F, Seuring S (2017) Challenges and opportunities of digital information at the intersection of big data analytics and supply chain management. Int J Oper Prod Manag 37:10–36

    Google Scholar 

  • Ketzenberg ME, Geismar N, Metters R, van der Laan E (2013) The value of information for managing retail inventory remotely. Prod Oper Manag 22:811–825

    Google Scholar 

  • Kumar A, Anbanandam R (2020) Environmentally responsible freight transport service providers’ assessment under data-driven information uncertainty. J Enterp Inf Manag. https://doi.org/10.1108/JEIM-12-2019-0403

    Article  Google Scholar 

  • Lee HL, So KC, Tang CS (2000) The value of information sharing in a two-level supply chain. Manage Sci 46:626–643

    MATH  Google Scholar 

  • Li L (2002) Information sharing in a supply chain with horizontal competition. Manage Sci 48:1196–1212

    MATH  Google Scholar 

  • Li D, Wang X (2017) Dynamic supply chain decisions based on networked sensor data: an application in the chilled food retail chain. Int J Prod Res 55:5127–5141

    Google Scholar 

  • Li T, Zhang H (2015) Information sharing in a supply chain with a make-to-stock manufacturer. Omega 50:115–125

    Google Scholar 

  • Li L (1985) Cournot oligopoly with information sharing. RAND J Econ pp 521–536

  • Liu P, Yi SP (2018b) Investment decision-making and coordination of a three-stage supply chain considering data company in the big data era. Ann Oper Res

  • Liu P, Yi S-P (2018a) A study on supply chain investment decision-making and coordination in the big data environment. Ann Oper Res 270:235–253

    MathSciNet  MATH  Google Scholar 

  • Ma C, Huang D (2019) Research on the impact of green innovation alliance mode on decision-making of two-cycle closed-loop supply chain. J Comb Optim 39(2):519–546

    MathSciNet  MATH  Google Scholar 

  • Ma N, Gao R, Wang X, Li P (2020) Green supply chain analysis under cost sharing contract with uncertain information based on confidence level. Soft Compt. https://doi.org/10.1007/s00500-019-03801-1

    Article  MATH  Google Scholar 

  • Mishra N, Singh A (2018) Use of twitter data for waste minimisation in beef supply chain. Ann Oper Res 270:337–359

    Google Scholar 

  • Mishra BK, Raghunathan S, Yue X (2009) Demand forecast sharing in supply chains. Prod Oper Manag 18:152–166

    Google Scholar 

  • Argilaguet Montarelo L, Glardon R, Zufferey N (2017) A global simulation-optimisation approach for inventory management in a decentralised supply chain. In: Supply Chain Forum: An International Journal pp 112-119. Taylor and Francis

  • Nguyen T, Zhou Li, Spiegler V, Ieromonachou P, Lin Y (2018) Big data analytics in supply chain management: a state-of-the-art literature review. Comput Oper Res 98:254–264

    MathSciNet  MATH  Google Scholar 

  • Oh L-B, Teo H-H, Sambamurthy V (2012) The effects of retail channel integration through the use of information technologies on firm performance. J Oper Manag 30:368–381

    Google Scholar 

  • Ozer M (2011) Understanding the impacts of product knowledge and product type on the accuracy of intentions-based new product predictions. Eur J Oper Res 211:359–369

    Google Scholar 

  • Ranjan A, Jha JK (2019) Pricing and coordination strategies of a dual-channel supply chain considering green quality and sales effort. J Clean Prod 218:409–424

    Google Scholar 

  • See-To EWK, Ngai EWT (2018) Customer reviews for demand distribution and sales nowcasting: a big data approach. Ann Oper Res 270:415–431

    MATH  Google Scholar 

  • Shang W, Ha AY, Tong S (2016) Information sharing in a supply chain with a common retailer. Manage Sci 62:245–263

    Google Scholar 

  • Shen B, Chan H-L (2017) Forecast information sharing for managing supply chains in the big data era: recent development and future research. Asia-Pacific J Oper Res 34:1740001

    MathSciNet  MATH  Google Scholar 

  • Singh AK, Subramanian N, Pawar KS, Bai R (2018) Cold chain configuration design: location-allocation decision-making using coordination, value deterioration, and big data approximation. Ann Oper Res 270:433–457

    Google Scholar 

  • Song ML, Fisher R, Wang JL, Cui LB (2016) Environmental performance evaluation with big data: theories and methods. Ann Oper Res

  • Syntetos AA, Babai Z, Boylan JE, Kolassa S, Nikolopoulos K (2016) Supply chain forecasting: theory, practice, their gap and the future. Eur J Oper Res 252:1–26

    MathSciNet  MATH  Google Scholar 

  • Teunter RuudH, Zied Babai M, Bokhorst JAC, Syntetos AA (2018) Revisiting the value of information sharing in two-stage supply chains. Eur J Oper Res 270:1044–1052

    MathSciNet  MATH  Google Scholar 

  • Tong W, Dong Mu, Zhao Fu, Mendis GP, Sutherland JW (2019) The impact of cap-and-trade mechanism and consumers’ environmental preferences on a retailer-led supply Chain. Resour Conserv Recycl 142:88–100

    Google Scholar 

  • Trkman P, McCormack K, De Oliveira MPV, Ladeira MB (2010) The impact of business analytics on supply chain performance. Decis Support Syst 49(3):318–327

    Google Scholar 

  • Waller MA, Fawcett SE (2013) Data science predictive analytics, and big data: a revolution that will transform supply chain design and management. J Bus Logist 2:77–84

    Google Scholar 

  • Wamba F, Samuel SA, Edwards A, Chopin G, Gnanzou D (2015) How ‘big data’ can make big impact: findings from a systematic review and a longitudinal case study. Int J Prod Econ 165:234–246

    Google Scholar 

  • Wang G, Gunasekaran A, Ngai EWT, Papadopoulos T (2016) Big data analytics in logistics and supply chain management: certain investigations for research and applications. Int J Prod Econ 176:98–110

    Google Scholar 

  • Wang M, Zhao L, Herty M (2018) Modelling carbon trading and refrigerated logistics services within a fresh food supply chain under carbon cap-and-trade regulation. Int J Prod Res 56:4207–4225

    Google Scholar 

  • Wang J, Yan Y, Huibin Du, Zhao R (2019) The optimal sales format for green products considering downstream investment. Int J Prod Res. https://doi.org/10.1080/00207543.2019.1612963

    Article  Google Scholar 

  • Wei J, Wang Y, Jinghui Lu (2020) Information sharing and sales patterns choice in a supply chain with product’s greening improvement. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.123704

    Article  Google Scholar 

  • Wong CY, Wong CWY, Boon-itt S (2020) Effects of green supply chain integration and green innovation on environmental and cost performance. Int J Prod Res 58(5):1–21

    Google Scholar 

  • Wu J, Jiang F, He Y (2018) Pricing and horizontal information sharing in a supply chain with capacity constraint. Oper Res Lett 46:402–408

    MathSciNet  MATH  Google Scholar 

  • Xia L, Guo T, Qin J, Yue X, Zhu N (2018) Carbon emission reduction and pricing policies of a supply chain considering reciprocal preferences in cap-and-trade system. Ann Oper Res 268:149–175

    MathSciNet  MATH  Google Scholar 

  • Xu J (2010) Duopoly information sharing with differentiated products. Oper Res Lett 38:287–291

    MathSciNet  MATH  Google Scholar 

  • Xu L, Wang C (2018) Sustainable manufacturing in a closed-loop supply chain considering emission reduction and remanufacturing. Resour Conserv Recycl 131:297–304

    Google Scholar 

  • Xu L, Wang C, Zhao J (2018) Decision and coordination in the dual-channel supply chain considering cap-and-trade regulation. J Clean Prod 197:551–561

    Google Scholar 

  • Yan R, Pei Z (2015) Incentive information sharing in various market structures. Decis Support Syst 76:76–86

    Google Scholar 

  • Yan X, Zhao H (2015) Inventory sharing and coordination among n independent retailers. Eur J Oper Res 243:576–587

    MathSciNet  MATH  Google Scholar 

  • Yang M, Gong X (2021) Optimal decisions and pareto improvement for green supply chain considering reciprocity and cost-sharing contract. Environ Sci Pollut Res 28(23):29859–29874

    Google Scholar 

  • Yang T, Chao F, Xinbao L, Jun P, Liu L, Panos MP (2018) Closed-loop supply chain inventory management with recovery information of reusable containers. J Comb Optim 35(1):266–292

    MathSciNet  MATH  Google Scholar 

  • Yang M, Zhang T, Wang C (2021) The optimal e-commerce sales mode selection and information sharing strategy under demand uncertainty. Compt Ind Eng 162:107718. https://doi.org/10.1016/j.cie.2021.107718

    Article  Google Scholar 

  • Yang M, Zhang T, Zhang Y (2022) Optimal pricing and green decisions in a dual-channel supply chain with cap-and-trade regulation. Environ Sci Pollut Res 29:28208–28225. https://doi.org/10.1007/s11356-021-18097-8

    Article  Google Scholar 

  • Yu Y, Zhou S, Shi Y (2020) Information sharing or not across the supply chain: the role of carbon emission reduction. Trans Res Part E Logist Transp Rev. https://doi.org/10.1016/j.tre.2020.101915

    Article  Google Scholar 

  • Yue X, Liu J (2006) Demand forecast sharing in a dual-channel supply chain. Eur J Oper Res 174:646–667

    MATH  Google Scholar 

  • Zhao R, Liu Y, Zhang N, Huang T (2017) An optimization model for green supply chain management by using a big data analytic approach. J Clean Prod 142:1085–1097

    Google Scholar 

  • Zhou M, Dan B, Ma S, Zhang X (2017) Supply chain coordination with information sharing: the informational advantage of GPOs. Eur J Oper Res 256:785–802

    MathSciNet  MATH  Google Scholar 

  • Zhou Y, Guo J, Zhou W (2018) Pricing/service strategies for a dual-channel supply chain with free riding and service-cost sharing. Int J Prod Econ 196:198–210

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Shanghai Soft Science Research Project (No. 23692120400, No. 23692111500), the Fundamental Research Funds for the Central Universities: “High-Quality Development of Digital Economy: An Investigation of Characteristics and Driving Strategies (Grant Numbers 2023110139)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 Proof of Proposition 1

By calculating the difference in the ex-ante profit, we have:

$$ V_{2}^{B} = \Pi_{2}^{B} - \Pi_{1}^{B} = E\left( {\pi_{2}^{B} } \right) - E\left( {\pi_{1}^{B} } \right) = \frac{{3k\eta \sigma_{0}^{2} \gamma }}{2N}, $$
(A.1)
$$ V_{2}^{M} = \Pi_{2}^{M} - \Pi_{1}^{M} = E\left( {\pi_{2}^{M} } \right) - E\left( {\pi_{1}^{M} } \right) = \frac{{3k^{2} \left( {e^{2} - 8\eta } \right)\eta \sigma_{0}^{2} \gamma }}{{4N^{2} }}, $$
(A.2)
$$ V_{2}^{R} = \Pi_{2}^{R} - \Pi_{1}^{R} = E\left( {\pi_{2}^{R} } \right) - E\left( {\pi_{1}^{R} } \right) = \frac{{k\eta \left( {2e^{2} k - 13k\eta + 2\beta^{2} \eta } \right)\sigma_{0}^{2} \gamma }}{{ - N^{2} }}, $$
(A.3)
$$ V_{2}^{SC} = \Pi_{2}^{{{\text{SC}}}} - \Pi_{1}^{{{\text{SC}}}} = E\left( {\pi_{2}^{{{\text{SC}}}} } \right) - E\left( {\pi_{1}^{{{\text{SC}}}} } \right) = \frac{{k\eta \left( {e^{2} k - 2\left( {10k + \beta^{2} } \right)\eta } \right)\sigma_{0}^{2} \gamma }}{{4N^{2} }}, $$
(A.4)

where \({\rm N} = e^{2} k + \left( { - 8k + \beta^{2} } \right)\eta < 0\), \(e^{2} - 8\eta < 0\), then we can derive \(V_{2}^{B} < 0\), \(V_{2}^{M} < 0\), \(V_{2}^{R} > 0\), \(V_{2}^{SC} < 0\). Similarly, we have

$$ \Pi_{0}^{{{\text{SC}}}} - \Pi_{1}^{{{\text{SC}}}} = E\left( {\pi_{0}^{{{\text{SC}}}} } \right) - E\left( {\pi_{1}^{{{\text{SC}}}} } \right) = \frac{{ - \eta k^{3} \left( {e^{2} - 12\eta } \right)^{2} \varphi^{2} - 4k\eta \left( {4k + \beta^{2} } \right)^{2} \eta^{2} \sigma_{0}^{2} \gamma }}{{4N^{2} \left( {e^{2} k + 2\left( { - 2k + \beta^{2} } \right)\eta } \right)}} > 0, $$
$$ \Pi_{0}^{{{\text{SC}}}} - \Pi_{2}^{{{\text{SC}}}} = E\left( {\pi_{0}^{{{\text{SC}}}} } \right) - E\left( {\pi_{2}^{{{\text{SC}}}} } \right) = - \frac{{k^{3} \left( {e^{2} - 12\eta } \right)^{2} \eta \left( {\varphi^{2} + \sigma_{0}^{2} \gamma } \right)}}{{4N^{2} \left( {e^{2} k + 2\left( { - 2k + \beta^{2} } \right)\eta } \right)}} > 0, $$
$$ \Pi_{2}^{{{\text{SC}}}} - \Pi_{1}^{{{\text{SC}}}} = E\left( {\pi_{2}^{{{\text{SC}}}} } \right) - E\left( {\pi_{1}^{{{\text{SC}}}} } \right) = \frac{{k\eta \left( {e^{2} k - 2\left( {10k + \beta^{2} } \right)\eta } \right)\sigma_{0}^{2} \gamma }}{{4\left( {e^{2} k + \left( { - 8k + \beta^{2} } \right)\eta } \right)^{2} }} < 0. $$

1.2 Proof of Table 2:

We get derivatives with respect to \(e\),\( \eta\), \(\beta\),\( k\), \(\gamma\):

\(\frac{{\partial V_{2}^{B} }}{\partial e} = \frac{{ - 3ek^{2} \eta \sigma_{0}^{2} \gamma }}{{N^{2} }}\),

\(\frac{{\partial V_{2}^{B} }}{\partial \eta } = \frac{{3e^{2} k^{2} \sigma_{0}^{2} \gamma }}{{2N^{2} }}\),

\(\frac{{\partial V_{2}^{B} }}{\partial \beta } = \frac{{ - 3k\beta \eta^{2} \sigma_{0}^{2} \gamma }}{{N^{2} }}\),

\(\frac{{\partial V_{2}^{B} }}{\partial k} = \frac{{3\beta^{2} \eta^{2} \sigma_{0}^{2} \gamma }}{{2N^{2} }}\),

\(\frac{{\partial V_{2}^{B} }}{\partial \gamma } = \frac{{3k\eta \sigma_{0}^{2} }}{2N}\);

\(\frac{{\partial V_{2}^{M} }}{\partial e} = \frac{{3ek^{2} \eta \left( {e^{2} k - \left( {8k + \beta^{2} } \right)\eta } \right)\sigma_{0}^{2} \gamma }}{{ - 2N^{3} }}\),

\(\frac{{\partial V_{2}^{M} }}{\partial \eta } = \frac{{3e^{2} k^{2} \left( {e^{2} k - \left( {8k + \beta^{2} } \right)\eta } \right)\sigma_{0}^{2} \gamma }}{{4N^{3} }}\),

\(\frac{{\partial V_{2}^{M} }}{\partial \beta } = \frac{{3k^{2} \beta \left( {e^{2} - 8\eta } \right)\eta^{2} \sigma_{0}^{2} \gamma }}{{ - N^{3} }}\),

\(\frac{{\partial V_{2}^{M} }}{\partial k} = \frac{{3k\beta^{2} \left( {e^{2} - 8\eta } \right)\eta^{2} \sigma_{0}^{2} \gamma }}{{2N^{3} }}\),

\(\frac{{\partial V_{2}^{M} }}{\partial \gamma } = \frac{{3k^{2} \left( {e^{2} - 8\eta } \right)\eta \sigma_{0}^{2} }}{{4N^{2} }}\);

\(\frac{{\partial V_{2}^{R} }}{\partial e} = \frac{{4ek^{2} \eta \left( {e^{2} k + \left( { - 5k + \beta^{2} } \right)\eta } \right)\sigma_{0}^{2} \gamma }}{{N^{3} }}\),

\(\frac{{\partial V_{2}^{R} }}{\partial \eta } = \frac{{2e^{2} k^{2} \left( {e^{2} k + \left( { - 5k + \beta^{2} } \right)\eta } \right)\sigma_{0}^{2} \gamma }}{{ - N^{3} }}\),

\(\frac{{\partial V_{2}^{R} }}{\partial \beta } = \frac{{4k\beta \eta^{2} \left( {e^{2} k - 5k\eta + \beta^{2} \eta } \right)\sigma_{0}^{2} \gamma }}{{N^{3} }}\),

\(\frac{{\partial V_{2}^{R} }}{\partial k} = \frac{{2\beta^{2} \eta^{2} \left( {e^{2} k + \left( { - 5k + \beta^{2} } \right)\eta } \right)\sigma_{0}^{2} \gamma }}{{ - N^{3} }}\),

\(\frac{{\partial V_{2}^{R} }}{\partial \gamma } = \frac{{k\eta \left( {2e^{2} k - 13k\eta + 2\beta^{2} \eta } \right)\sigma_{0}^{2} }}{{ - N^{2} }}\);

\(\frac{{\partial V_{2}^{SC} }}{\partial e} = \frac{{ek^{2} \eta \left( {e^{2} k - 32k\eta - 5\beta^{2} \eta } \right)\sigma_{0}^{2} \gamma }}{{ - 2N^{3} }}\),

\(\frac{{\partial V_{2}^{SC} }}{\partial \eta } = \frac{{e^{2} k^{2} \left( {e^{2} k - 32k\eta - 5\beta^{2} \eta } \right)\sigma_{0}^{2} \gamma }}{{4N^{3} }}\),

\(\frac{{\partial V_{2}^{SC} }}{\partial \beta } = \frac{{k\beta \eta^{2} \left( {2e^{2} k - \left( {28k + \beta^{2} } \right)\eta } \right)\sigma_{0}^{2} \gamma }}{{ - N^{3} }}\),

\(\frac{{\partial V_{2}^{SC} }}{\partial k} = \frac{{\beta^{2} \eta^{2} \left( {2e^{2} k - \left( {28k + \beta^{2} } \right)\eta } \right)\sigma_{0}^{2} \gamma }}{{2N^{3} }}\),

\(\frac{{\partial V_{2}^{SC} }}{\partial \gamma } = \frac{{k\eta \left( {e^{2} k - 2\left( {10k + \beta^{2} } \right)\eta } \right)\sigma_{0}^{2} }}{{4N^{2} }}\)

Where \({\rm N} = e^{2} k + \left( { - 8k + \beta^{2} } \right)\eta < 0\), \({\text{e}}^{2} k - 4k\eta + \beta^{2} \eta < {\text{e}}^{2} k - 4k\eta + 2\beta^{2} \eta < 0\),\( 8\eta - e^{2} > 0\), and we can derive \(e^{2} k + \left( { - 5k + \beta^{2} } \right)\eta < 0\),\( e^{2} k - \left( {8k + \beta^{2} } \right)\eta < 0\),\({ }e^{2} k - 32k\eta - 5\beta^{2} \eta < 0\),\( 2e^{2} k - \left( {28k + \beta^{2} } \right)\eta < 0\).

1.3 Proof of Proposition 2

The first derivatives of the ex-ante profits versus forecasting accuracy (\(\gamma\)) in Case 1 and Case 2 are:

$$ \begin{gathered} \frac{{d\prod _{1}^{M} }}{{d\gamma }} = - \frac{{k^{2} \left( {e^{2} - 8\eta } \right)\eta \sigma _{0}^{2} }}{{N^{2} }},\;\frac{{d\prod _{1}^{R} }}{{d\gamma }} = \frac{{2k\eta \left( {e^{2} k + \left( { - 6k + \beta ^{2} } \right)\eta } \right)\sigma _{0}^{2} }}{{N^{2} }}, \hfill \\ \frac{{d\prod _{1}^{B} }}{{d\gamma }} = - \frac{{2k\eta \sigma _{0}^{2} }}{N},\;\frac{{d\prod _{1}^{{SC}} }}{{d\gamma }} = - \frac{{k^{2} \left( {e^{2} - 12\eta } \right)\eta \sigma _{0}^{2} }}{{N^{2} }}; \hfill \\ \end{gathered} $$
$$ \begin{gathered} \frac{{d\prod _{2}^{M} }}{{d\gamma }} = \frac{{\sigma _{0}^{2} k^{2} \left( {e^{2} - 8\eta } \right)\eta }}{{ - 4N^{2} }},\;\frac{{d\prod _{2}^{R} }}{{d\gamma }} = \frac{{\sigma _{0}^{2} k^{2} \eta ^{2} }}{{N^{2} }},\frac{{d\prod _{2}^{B} }}{{d\gamma }} = \frac{{\sigma _{0}^{2} k\eta }}{{ - 2N}},\; \hfill \\ \frac{{d\prod _{2}^{{SC}} }}{{d\gamma }} = \frac{{\sigma _{0}^{2} k\eta \left( { - 3e^{2} k + 28k\eta - 2\beta ^{2} \eta } \right)}}{{4N^{2} }}. \hfill \\ \end{gathered} $$

By assumption \({\text{e}}^{2} k - 4k\eta + 2\beta^{2} \eta < 0\), we have \(8\eta - e^{2} > 0\), \({\rm N} < 0\),\({ }e^{2} k + \left( { - 6k + \beta^{2} } \right)\eta < 0\),\({ }e^{2} - 12\eta < 0\). Then we can derive \(d\Pi_{1}^{M} /d\gamma > 0\), \(d\Pi_{1}^{R} /d\gamma < 0\), \(d\Pi_{1}^{B} /d\gamma > 0\), \(d\Pi_{1}^{SC} /d\gamma > 0\); \(d\Pi_{2}^{M} /d\gamma > 0\), \(d\Pi_{2}^{R} /d\gamma > 0\), \(d\Pi_{2}^{B} /d\gamma > 0\), \(d\Pi_{2}^{SC} /d\gamma > 0\).

1.4 Proof of Proposition 3

The first derivatives of the ex-ante profits versus \(\beta\) and \(e\) are:

\(\frac{{d\Pi_{1}^{SC} }}{d\beta } = \frac{{k\beta \eta^{2} \left( {\left( {2e^{2} k + \left( { - 20k + \beta^{2} } \right)\eta } \right)\varphi^{2} + 4k\gamma \left( {e^{2} - 12\eta } \right)\sigma_{0}^{2} } \right)}}{{N^{3} }}\),

\(\frac{{d\Pi_{1}^{M} }}{d\beta } = \frac{{k^{2} \beta \left( {e^{2} - 8\eta } \right)\eta^{2} \left( {\varphi^{2} + 4\gamma \sigma_{0}^{2} } \right)}}{{N^{3} }}\),

\(\frac{{d\Pi_{1}^{R} }}{d\beta } = - \frac{{4k\beta \eta^{2} \left( {k\eta \varphi^{2} + \gamma \left( {e^{2} k + \left( { - 4k + \beta^{2} } \right)\eta } \right)\sigma_{0}^{2} } \right)}}{{N^{3} }}\),

\(\frac{{d\Pi_{1}^{B} }}{d\beta } = \frac{{k\beta \eta^{2} \left( {\varphi^{2} + 4\gamma \sigma_{0}^{2} } \right)}}{{N^{2} }}\);

\(\frac{{d\Pi_{1}^{SC} }}{de} = \frac{{ek^{2} \eta \left( {\left( {3e^{2} k + \left( { - 32k + \beta^{2} } \right)\eta } \right)\varphi^{2} + 4\gamma \left( {e^{2} k - \left( {16k + \beta^{2} } \right)\eta } \right)\sigma_{0}^{2} } \right)}}{{2N^{3} }}\),

\(\frac{{d\Pi_{1}^{M} }}{de} = \frac{{ek^{2} \eta \left( {e^{2} k - \left( {8k + \beta^{2} } \right)\eta } \right)\left( {\varphi^{2} + 4\gamma \sigma_{0}^{2} } \right)}}{{2N^{3} }}\),

\(\frac{{d\Pi_{1}^{R} }}{de} = - \frac{{4ek^{2} \eta \left( {k\eta \varphi^{2} + \gamma \left( {e^{2} k + \left( { - 4k + \beta^{2} } \right)\eta } \right)\sigma_{0}^{2} } \right)}}{{N^{3} }}\),

\(\frac{{d\Pi_{1}^{B} }}{de} = \frac{{ek^{2} \eta \left( {\varphi^{2} + 4\gamma \sigma_{0}^{2} } \right)}}{{N^{2} }}\)

\(\frac{{d\Pi_{2}^{SC} }}{d\beta } = \frac{{k\beta \eta^{2} \left( { - 2e^{2} k + 20k\eta - \beta^{2} \eta } \right)\left( {\varphi^{2} + \gamma \sigma_{0}^{2} } \right)}}{{ - N^{3} }}\),

\(\frac{{d\Pi_{2}^{M} }}{d\beta } = \frac{{k^{2} \beta \left( {e^{2} - 8\eta } \right)\eta^{2} \left( {\varphi^{2} + \gamma \sigma_{0}^{2} } \right)}}{{N^{3} }}\),

\(\frac{{d\Pi_{2}^{R} }}{d\beta } = \frac{{4k^{2} \beta \eta^{3} \left( {\varphi^{2} + \gamma \sigma_{0}^{2} } \right)}}{{ - N^{3} }}\),

\(\frac{{d\Pi_{2}^{B} }}{d\beta } = \frac{{k\beta \eta^{2} \left( {\varphi^{2} + \gamma \sigma_{0}^{2} } \right)}}{{N^{2} }}\);

\(\frac{{d\Pi_{2}^{SC} }}{de} = \frac{{ek^{2} \eta \left( {3e^{2} k + \left( { - 32k + \beta^{2} } \right)\eta } \right)\left( {\varphi^{2} + \gamma \sigma_{0}^{2} } \right)}}{{2N^{3} }}\),

\(\frac{{d\Pi_{2}^{M} }}{de} = \frac{{ek^{2} \eta \left( {e^{2} k - \left( {8k + \beta^{2} } \right)\eta } \right)\left( {\varphi^{2} + \gamma \sigma_{0}^{2} } \right)}}{{2N^{3} }}\),

\(\frac{{d\Pi_{2}^{R} }}{de} = \frac{{4ek^{3} \eta^{2} \left( {\varphi^{2} + \gamma \sigma_{0}^{2} } \right)}}{{ - N^{3} }}\),

\(\frac{{d\Pi_{2}^{B} }}{de} = \frac{{ek^{2} \eta \left( {\varphi^{2} + \gamma \sigma_{0}^{2} } \right)}}{{N^{2} }}\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Zhang, T. Demand forecasting and information sharing of a green supply chain considering data company. J Comb Optim 45, 119 (2023). https://doi.org/10.1007/s10878-023-01039-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10878-023-01039-0

Keywords

Navigation