Skip to main content
Log in

On the Alon–Tarsi number of semi-strong product of graphs

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

The Alon–Tarsi number was defined by Jensen and Toft (Graph coloring problems, Wiley, New York, 1995). The Alon–Tarsi number AT(G) of a graph G is the smallest integer k such that G has an orientation D with maximum outdegree \(k-1\) and the number of even circulation is not equal to that of odd circulations in D. It is known that \(\chi (G)\le \chi _l(G)\le AT(G)\) for any graph G, where \(\chi (G)\) and \(\chi _l(G)\) are the chromatic number and the list chromatic number of G. Denote by \(H_1 \square H_2\) and \(H_1\bowtie H_2\) the Cartesian product and the semi-strong product of two graphs \(H_1\) and \(H_2\), respectively. Kaul and Mudrock (Electron J Combin 26(1):P1.3, 2019) proved that \(AT(C_{2k+1}\square P_n)=3\). Li, Shao, Petrov and Gordeev (Eur J Combin 103697, 2023) proved that \(AT(C_n\square C_{2k})=3\) and \(AT(C_{2m+1}\square C_{2n+1})=4\). Petrov and Gordeev (Mosc. J. Comb. Number Theory 10(4):271–279, 2022) proved that \(AT(K_n\square C_{2k})=n\). Note that the semi-strong product is noncommutative. In this paper, we determine \(AT(P_m \bowtie P_n)\), \(AT(C_m \bowtie C_{2n})\), \(AT(C_m \bowtie P_n)\) and \(AT(P_m \bowtie C_{n})\). We also prove that \(5\le AT(C_m \bowtie C_{2n+1})\le 6\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  • Alon N, Tarsi M (1992) Colorings and orientations of graphs. Combinatorica 12(2):125–134

    Article  MathSciNet  Google Scholar 

  • Alon N (1999) Combinatorial Nullstellensatz. Comb Probab Comput 8(1–2):7–29

    Article  MathSciNet  Google Scholar 

  • Cushing W, Kierstead HA (2010) Planar graphs are 1-relaxed, 4-choosable. Eur J Combin 31:1385–1397

    Article  MathSciNet  Google Scholar 

  • Grytczuk J, Zhu X (2020) Alon–Tarsi number of planar graphs minus a matching. J Combin Theory Ser B 145:511–520

    Article  MathSciNet  Google Scholar 

  • Hefetz D (2011) On two generalizations of the Alon–Tarsi polynomial method. J Combin Theory Ser B 101(6):403–414

    Article  MathSciNet  Google Scholar 

  • Hladký J, Král D, Schauz U (2010) Brooks’ theorem via the Alon–Tarsi theorem. Discrete Math 310:3426–3428

    Article  MathSciNet  Google Scholar 

  • Jensen T, Toft B (1995) Graph coloring problems. Wiley, New York

    Google Scholar 

  • Kim R, Kim S-J, Zhu X (2019) The Alon–Tarsi number of subgraphs of a planar graph. arXiv:1906.01506

  • Kaul H, Mudrock JA (2019) On the Alon–Tarsi number and chromatic-choosability of cartesian products of graphs. Electron J Combin 26(1):P1.3

    Article  MathSciNet  Google Scholar 

  • Lu H, Zhu X (2020) The Alon–Tarsi number of planar graphs without cycles and length \(4\) and \(l\). Discrete Math 343(5):111797

    Article  MathSciNet  Google Scholar 

  • Li Z, Shao Z, Petrov F, Gordeev A (2023) The Alon–Tarsi number of a toroidal grid. Eur J Combin 103697

  • Petrov F, Gordeev A (2022) Alon-Tarsi numbers of direct products. Mosc. J. Comb. Number Theory 10(4):271–279

    Article  MathSciNet  Google Scholar 

  • Schauz U (2008) Algebraically solvable problems: describing polynomials as equivalent to explicit solutions. Electron J Combin 15(1):R10

    Article  MathSciNet  Google Scholar 

  • Schauz U (2014) Proof of the list edge coloring conjecture for complete graphs of prime degree. Electron J Combin 21(3):P3.43

    Article  MathSciNet  Google Scholar 

  • Thomassen C (1994) Every planar graph is 5-choosable. J Combin Theory Ser B 62(1):180–181

    Article  MathSciNet  Google Scholar 

  • Zhu X (2019) The Alon-Tarsi number of planar graphs. J Comb Theory Ser B 134:354–358

    Article  MathSciNet  Google Scholar 

  • Zhu X, Balakrishnan R (2021) Alon–Tarsi theorem and its applications

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangwen Li.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xiangwen Li: Supported by the NSFC (12031018).

Appendix

Appendix

Procedure 1

$$\begin{aligned}{} & {} >>syms\ \ x1\ \ x2\ \ x3\ \ x4\ \ x5\ \ x6\ \ x9\ \ x10\\{} & {} >> f=(x1-x3)*(x1-x4)*(x2-x3)*(x2-x4)*(x3-x5)\\{} & {} \quad *(x3-x6)*(x4-x5)*(x4-x6);\\{} & {} >> f1=diff(diff(f,x3,2),x4,2)/factorial(2)\wedge 2; x3=0;x4=0;f1\\{} & {} \quad =factor(subs(f1)) \end{aligned}$$

\(f1 =(x2*x6+x2*x5+x1*x2+x1*x5+x6*x5+x1*x6)\wedge 2\)

$$\begin{aligned}{} & {} >> f2=(x1*x2+x1*x5+x1*x6+x2*x5+x2*x6+x5*x6)\wedge 2\\{} & {} \quad *(x5*x6+x5*x9+x5*x10+x6*x9+x6*x10+x9*x10)\wedge 2\\{} & {} \quad *(x1-x10)*(x1-x9)*(x2-x9)*(x2-x10);\\{} & {} >> f3=diff(diff(diff(diff(f2,x1,2),x2,2),x9,2),x10,2)/factorial(2)\wedge 4;\\{} & {} >> x1=0;x2=0;x9=0;x10=0;f3=expand(subs(f3)) \end{aligned}$$

\(f3 =56*x6*x5\wedge 3+90*x6\wedge 2*x5\wedge 2+56*x6\wedge 3*x5+16*x5\wedge 4+16*x6\wedge 4\)

\(>> diff(diff(f3,x5,2),x6,2)/factorial(2)\wedge 2\)

\(ans =90\)

Procedure 2

$$\begin{aligned}{} & {} >> syms\ \ x1\ \ x2\ \ x3\ \ x4\ \ x5\ \ x6\ \ x7\ \ x8\ \ x9\ \ x10\ \ x11\ \ x12\ \ x13\ \ x14\\{} & {} >>f=(x1-x14)*(x1-x13)*(x2-x14)*(x2-x13)*\\{} & {} \quad (x1*x2+x1*x5+x1*x6+x2*x5+x2*x6+x5*x6)\wedge 2*\\{} & {} \quad (x9*x10+x9*x13+x9*x14 +x10*x13+x10*x14+x13*x14)\wedge 2;\\{} & {} >>f1= diff(diff(diff(diff(f,x1,2),x2,2),x13,2),x14,2)/factorial(2)\wedge 4;\\{} & {} >> x1=0;x2=0;x13=0;x14=0; f1=expand(subs(f1)) \end{aligned}$$

\(f1 =-16*x6\wedge 2*x5*x10-16*x6*x5\wedge 2*x10-16*x6\wedge 2*x5*x9+44*x6*x5*x10\wedge 2+44*x6*x5*x9\wedge 2 +44*x9*x10*x6\wedge 2+44*x9*x10*x5\wedge 2-16*x9*x10\wedge 2*x6-16*x9\wedge 2*x10*x6-16*x9*x10\wedge 2*x5 -16*x9\wedge 2*x10*x5-16*x6*x5\wedge 2*x9+16*x5\wedge 2*x9\wedge 2+16*x5\wedge 2*x10\wedge 2 +16*x6\wedge 2*x9\wedge 2+16*x6\wedge 2*x10\wedge 2+x9\wedge 2*x10\wedge 2+120*x6*x5*x9*x10+x6\wedge 2*x5\wedge 2\)

$$\begin{aligned}{} & {} >> f2=(x5*x6+x5*x9+x5*x10+x6*x9+x6*x10+x9*x10)\wedge 2*f1;\\{} & {} >> diff(diff(diff(diff(f2,x5,2),x6,2),x9,2),x10,2)/factorial(2)\wedge 4 \end{aligned}$$

\(ans =882\)

Procedure 3

$$\begin{aligned}{} & {} >>syms\ \ x5\ \ x6\ \ x9\ \ x10\ \ x13\ \ x14\\{} & {} >> f=(x5*x6+x5*x9+x5*x10+x6*x9+x6*x10+x9*x10)\wedge 2*\\{} & {} \quad (x9*x10+x9*x13+x9*x14+x10*x13+x10*x14+x13*x14)\wedge 2;\\{} & {} >> f1=diff(diff(f,x9,2),x10,2)/factorial(2)\wedge 2; x9=0;x10=0; f1\\{} & {} \quad =expand(subs(f1)) \end{aligned}$$

\(f1=8*x13\wedge 2*x14*x5+44*x6*x5*x13*x14+x6\wedge 2*x5\wedge 2+x13\wedge 2*x14\wedge 2+8*x13*x14\wedge 2*x5 +8*x13\wedge 2*x14*x6+8*x13*x14\wedge 2*x6+16*x5\wedge 2*x13*x14+16*x6*x5*x13\wedge 2+16*x6*x5*x14\wedge 2 +16*x6\wedge 2*x13*x14+8*x6*x5\wedge 2*x13+8*x6\wedge 2*x5*x13+8*x6*x5\wedge 2*x14+8*x6\wedge 2*x5*x14 +6*x5\wedge 2*x13\wedge 2+6*x5\wedge 2*x14\wedge 2+6*x6\wedge 2*x13\wedge 2+6*x6\wedge 2*x14\wedge 2\)

Without loss of generality, let \(t=5\).

$$\begin{aligned}{} & {} >> syms\ \ x5\ \ x6\ \ x13\ \ x14\ \ x15\ \ x16\ \ x17\ \ x18\ \ A\ \ B\ \ C\ \ D\ \ E\ \ F\\{} & {} >>f1=A*(x5*x6\wedge 2*x13+x5\wedge 2*\\{} & {} \quad x6*x13+x5*x6\wedge 2*x14+x5\wedge 2*x6*x14+x13*x14\wedge 2*\\{} & {} \quad x5+x13*x14\wedge 2*x6 +x13\wedge 2*x14*x5+x13\wedge 2*x14*x6)\\{} & {} \quad +B*(x5\wedge 2*x13*x14+x6\wedge 2*x13*x14)+C*(x5*x6*x13\wedge 2\\{} & {} \quad +x5*x6*x14\wedge 2)+D*(x5\wedge 2*x6\wedge 2 +x13\wedge 2*x14\wedge 2) \\{} & {} \quad +E*(x5\wedge 2*x14\wedge 2+x5\wedge 2*x13\wedge 2+x6\wedge 2*x14\wedge 2\\{} & {} \quad +x6\wedge 2*x13\wedge 2)+F*x5*x6*x13*x14;\\{} & {} >> f2=(x13*x14+x13*x17+x13*x18+x14*x17+x14*x18\\{} & {} \quad +x17*x18)\wedge 2;\\{} & {} >> f3=diff(diff(f1*f2,x13,2),x14,2)/factorial(2)\wedge 2; \\{} & {} \quad x13=0;x14=0; f3=expand(subs(f3)) \end{aligned}$$

\(f3 =D*x6\wedge 2*x5\wedge 2+4*A*x17\wedge 2*x18*x5+4*A*x17*x18\wedge 2*x5+4*A*x17\wedge 2*x18*x6+4*A*x17*x18\wedge 2*x6 +2*C*x6*x5*x17\wedge 2+2*C*x6*x5*x18\wedge 2 +4*E*x5\wedge 2*x17*x18+4*E*x6\wedge 2*x17*x18+6*B*x5\wedge 2*x17*x18+6*B*x6\wedge 2*x17*x18+2*F*x5*x6*x17\wedge 2 +2*F*x5*x6*x18\wedge 2 +4*A*x6*x5\wedge 2*x17+4*A*x6*x5\wedge 2*x18+4*A*x6\wedge 2*x5*x17+4*A*x6\wedge 2*x5*x18+D*x17\wedge 2*x18\wedge 2 +2*E*x5\wedge 2*x17\wedge 2+6*F*x5*x6*x17*x18 +4*C*x6*x5*x17*x18+2*E*x5\wedge 2*x18\wedge 2+2*E*x6\wedge 2*x17\wedge 2+2*E*x6\wedge 2*x18\wedge 2 +2*B*x5\wedge 2*x17\wedge 2+2*B*x5\wedge 2*x18\wedge 2+2*B*x6\wedge 2*x17\wedge 2 +2*B*x6\wedge 2*x18\wedge 2\)

\(>>f4=-16*x6\wedge 2*x5*x18-16*x6*x5\wedge 2*x18-16*x6\wedge 2*x5*x17+44*x6*x5*x18\wedge 2+44*x6*x5*x17\wedge 2 +44*x17*x18*x6\wedge 2 +44*x17*x18*x5\wedge 2-16*x17*x18\wedge 2*x6-16*x17\wedge 2*x18*x6-16*x17*x18\wedge 2*x5-16*x17\wedge 2*x18*x5 -16*x6*x5\wedge 2*x17+16*x5\wedge 2*x17\wedge 2 +16*x5\wedge 2*x18\wedge 2+16*x6\wedge 2*x17\wedge 2+16*x6\wedge 2*x18\wedge 2+x17\wedge 2*x18\wedge 2 +120*x6*x5*x17*x18+x6\wedge 2*x5\wedge 2;\)

\(>>f5= diff(diff(diff(diff(f3*f4,x17,2),x18,2),x5,2),x6,2)/\)

\(factorial(2)\wedge 4\)

\(f5 =2*D-512*A+656*B+656*C+480*E+896*F\)

Procedure 4

$$\begin{aligned}{} & {} >>syms\ \ x1\ \ x2\ \ x3\ \ x4\ \ x5\ \ x6\ \ x7\ \ x8\ \ x9\\{} & {} >>f1=(x1-x4)*(x1-x5)*(x1-x6)*(x1-x7)*(x1-x8)\\{} & {} \quad *(x1-x9);df1\\{} & {} \quad =diff(f1,x1,3)/factorial(3);\\{} & {} >>x1=0;df1=subs(df1);\\{} & {} >>f2=(x2-x4)*(x2-x5)*(x2-x6)*(x2-x7)*(x2-x8)\\{} & {} \quad *(x2-x9);df2\\{} & {} \quad =diff(f2,x2,3)/factorial(3);\\{} & {} >>x2=0;df2=subs(df2);\\{} & {} >>f3=(x3-x4)*(x3-x5)*(x3-x6)*(x3-x7)*(x3-x8)\\{} & {} \quad *(x3-x9);df3\\{} & {} \quad =diff(f3,x3,3)/factorial(3);\\{} & {} >>;x3=0;df3=subs(df3);\\{} & {} >>f4=df1*df2*df3*(x4-x7)*(x4-x8)*(x4-x9);df4\\{} & {} \quad =diff(f4,x4,3)/factorial(3);\\{} & {} >>x4=0;df4=subs(df4);\\{} & {} >>f5=df4*(x5-x7)*(x5-x8)*(x5-x9);df5=diff(f5,x5,3)\\{} & {} \quad /factorial(3);\\{} & {} >>x5=0;df5=subs(df5);\\{} & {} >>df5=expand(df5);\\{} & {} >>f6=df5*(x6-x7)*(x6-x8)*(x6-x9);\\{} & {} >>df61=diff(f6,x6,3)/factorial(3);x6=0;subs(df61) \end{aligned}$$

\(ans=0\)

$$\begin{aligned}{} & {} >>df62=diff(f6,x6,4)/factorial(4);x6=0;df62=subs(df62);\\{} & {} >>diff(diff(diff(df62,x7,3),x8,2),x9,3)/(factorial(3)\wedge 2\\{} & {} \quad *factorial(2)) \end{aligned}$$

\(ans =-94\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, L., Li, X. On the Alon–Tarsi number of semi-strong product of graphs. J Comb Optim 47, 1 (2024). https://doi.org/10.1007/s10878-023-01099-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10878-023-01099-2

Keywords

Navigation