Skip to main content
Log in

Optimality Conditions for D.C. Vector Optimization Problems Under Reverse Convex Constraints

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we establish global necessary and sufficient optimality conditions for D.C. vector optimization problems under reverse convex constraints. An application to vector fractional mathematical programming is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • T. Amahroq A. Taa (1997) ArticleTitleOn Lagrange-Kuhn-Tucker multipliers for multiobjective optimization problems Optimization. 41 159–172

    Google Scholar 

  • M. Ciligot-Travain (1947) ArticleTitleOn Lagrange-kuhn-Tucher multipliers for pareto optimization problems Numerical Functional Analytical and Optimization. 15 689–693

    Google Scholar 

  • Clarke F.H. (1983). Optimization and Nonsmooth Analysis,Wiley-Interscience.

  • C. Combari M. Laghdir L. Thibault (1994) ArticleTitleSous-différentiel de fonctions convexes composées. Annals Science Mathematicals Québec. 18 119–148

    Google Scholar 

  • J.P. Dauer O.A. Saleh (1993) ArticleTitleA characterization of proper Minimal Points as solutions of sublinear Optimization Problems Journal of Mathematical Analysis and Applications. 178 227–246 Occurrence Handle10.1006/jmaa.1993.1303

    Article  Google Scholar 

  • A. Elhilali Alaoui (1996) ArticleTitleCaractérisation des fonctions D.C. Annals of Science and Mathematical Québec. 20 1–13

    Google Scholar 

  • F. Flores-Bazan W. Oettli (2001) ArticleTitleSimplified optimality conditions for minimizing the difference of vector-valued functions Journal of Optimization Theory and Application. 108 571–586

    Google Scholar 

  • Gadhi N., Metrane A. Sufficient Optimality Condition for Vector Optimization Problems Under D.C. Data, To appear in Journal of Global Optimization.

  • E.G. Gol’shtein (1971) Duality Theory in Mathematical Programming and its Application Nauka Moscow.

    Google Scholar 

  • JB. Hiriart-Urruty (1979) ArticleTitleTangent Cones, generalized Gradients and Mathematical Programming in Banach spaces Mathematical Operational Research. 4 79–97

    Google Scholar 

  • Hiriart-Urruty JB. (1989). From Convex Optimization to Nonconvex Optimization. Nonsmooth Optimization and related Topics. In: Clarke, F.H., Demyanov, V.F. and Giannessi, F. (eds.), Plenum Press, pp. 219–239.

  • JB. Hiriart-Urruty C. Lemaréchal (1993) Convex Analysis and Minimization Algorithms I Springer Berlin

    Google Scholar 

  • R. Horst H. Tuy (1996) Global optimization (Deterministic Approach) EditionNumber3 Springer New York.

    Google Scholar 

  • Lemaire B. (1995). Subdifferential of a convex composite functional. Application to optimal control in variational inequalities in Nondifferentiable Optimizaton. In:Proceeding Sopron, September 1984 lecture notes in economics and mathematical systems. springer, pp. 103–117.

  • Lemaire B., Volle M. (1998). Duality in D.C. programing, in nonconvex optimization and its applications, 27, 331–345.

  • B. Lemaire (1998) ArticleTitleDuality in reverse convex optimization Siam Journal of Optim. 8 1029–1037

    Google Scholar 

  • Levin V.L. On the subdifferential of a composite functional. Soviet Mathematical Doklady. 11: 1194–1195

  • JE. Martinez-Legaz A. Seeger (1992) ArticleTitleA formula on the approximata subdifferential of the difference of convex functions Bulletin of the Australian Mathematical Society. 45 37–41 Occurrence Handle10.1017/S0004972700036984

    Article  Google Scholar 

  • Martínez-Legaz JE. M. Volle (1999) ArticleTitleDuality in D.C.programming : The case of several D.C. constraints Journal of Mathematical Analysis Application. 237 657–671

    Google Scholar 

  • Michelot C. (1987). Caractérisation des minima locaux des fonctions de la classe D.C. Université de Dijon.

  • W. Oettli (1995) ArticleTitleKolmogorov conditions for minimizing vectorial optimization problems OR Spektrum. 17 227–229 Occurrence Handle10.1007/BF01720979

    Article  Google Scholar 

  • JP. Penot M. Théra (1982) ArticleTitleSemi-continuous mappings in general topology. Arch-Mathematical. 38 158–166

    Google Scholar 

  • JP. Penot (2001) ArticleTitleDuality for anticonvex programs Journal of Global optimization. 19 163–182 Occurrence Handle10.1023/A:1008327614099

    Article  Google Scholar 

  • C. Raffin (1969) Contribution á l’ étude des programmes convexes définis dans des espaces vectoriels topologiques Thése Paris.

    Google Scholar 

  • R.T. Rockafellar (1969) Convex Analysis Princeton University Press New Jersey.

    Google Scholar 

  • R.T. Rockafellar (1980) ArticleTitleGeneralized directional derivatives ans subgradients of non-convex functions Canadian Journal of Mathematical. 32 175–180

    Google Scholar 

  • P.D. Tao L.T. Hoai An (1997) ArticleTitleConvex analysis approach to D.C. programming: Theory, algorithms and applications. Acta Mathematica Vietnamica. 22 289–355

    Google Scholar 

  • Tao PD., Souad EB. (1988). Duality in D.C. optimization. Subgradient methods Trends in mathematical optimization. Internat. Ser. Numer. Math. 84(c), Birkhauser Verlag, Bassel, pp. 277–293.

  • P.T. Thach (1993) ArticleTitleGlobal optimality criterions and duality with zero gap in nonconvex optimization problems SIAM Journal of Mathematical Analaysis. 24 1537–1556

    Google Scholar 

  • H. Tuy (1995) D.C. Optimization: Theory, Methods and Algorithms, Handbook of Global Optimization Kluwer Academic Publishers Norwell 149–216

    Google Scholar 

  • H. Tuy W. Oettly (1994) ArticleTitleOn necessary and sufficient conditions for global optimality Revista de Mathématicas Aplicadas. 15 39–41

    Google Scholar 

  • M. Valadier (1972) ArticleTitleSous-différentiabilité de fonctions convexes àvaleurs dans un espace vectoriel ordonné. Math Scand. 30 65–74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Gadhi, M. Laghdir or A. Metrane.

Additional information

Mathematics Subject Classifications (1991). Primary 90C29, Secondary 49K30.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gadhi, N., Laghdir, M. & Metrane, A. Optimality Conditions for D.C. Vector Optimization Problems Under Reverse Convex Constraints. J Glob Optim 33, 527–540 (2005). https://doi.org/10.1007/s10898-004-8318-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-004-8318-4

Keywords

Navigation