Abstract
In this paper, we establish global necessary and sufficient optimality conditions for D.C. vector optimization problems under reverse convex constraints. An application to vector fractional mathematical programming is also given.
Similar content being viewed by others
References
T. Amahroq A. Taa (1997) ArticleTitleOn Lagrange-Kuhn-Tucker multipliers for multiobjective optimization problems Optimization. 41 159–172
M. Ciligot-Travain (1947) ArticleTitleOn Lagrange-kuhn-Tucher multipliers for pareto optimization problems Numerical Functional Analytical and Optimization. 15 689–693
Clarke F.H. (1983). Optimization and Nonsmooth Analysis,Wiley-Interscience.
C. Combari M. Laghdir L. Thibault (1994) ArticleTitleSous-différentiel de fonctions convexes composées. Annals Science Mathematicals Québec. 18 119–148
J.P. Dauer O.A. Saleh (1993) ArticleTitleA characterization of proper Minimal Points as solutions of sublinear Optimization Problems Journal of Mathematical Analysis and Applications. 178 227–246 Occurrence Handle10.1006/jmaa.1993.1303
A. Elhilali Alaoui (1996) ArticleTitleCaractérisation des fonctions D.C. Annals of Science and Mathematical Québec. 20 1–13
F. Flores-Bazan W. Oettli (2001) ArticleTitleSimplified optimality conditions for minimizing the difference of vector-valued functions Journal of Optimization Theory and Application. 108 571–586
Gadhi N., Metrane A. Sufficient Optimality Condition for Vector Optimization Problems Under D.C. Data, To appear in Journal of Global Optimization.
E.G. Gol’shtein (1971) Duality Theory in Mathematical Programming and its Application Nauka Moscow.
JB. Hiriart-Urruty (1979) ArticleTitleTangent Cones, generalized Gradients and Mathematical Programming in Banach spaces Mathematical Operational Research. 4 79–97
Hiriart-Urruty JB. (1989). From Convex Optimization to Nonconvex Optimization. Nonsmooth Optimization and related Topics. In: Clarke, F.H., Demyanov, V.F. and Giannessi, F. (eds.), Plenum Press, pp. 219–239.
JB. Hiriart-Urruty C. Lemaréchal (1993) Convex Analysis and Minimization Algorithms I Springer Berlin
R. Horst H. Tuy (1996) Global optimization (Deterministic Approach) EditionNumber3 Springer New York.
Lemaire B. (1995). Subdifferential of a convex composite functional. Application to optimal control in variational inequalities in Nondifferentiable Optimizaton. In:Proceeding Sopron, September 1984 lecture notes in economics and mathematical systems. springer, pp. 103–117.
Lemaire B., Volle M. (1998). Duality in D.C. programing, in nonconvex optimization and its applications, 27, 331–345.
B. Lemaire (1998) ArticleTitleDuality in reverse convex optimization Siam Journal of Optim. 8 1029–1037
Levin V.L. On the subdifferential of a composite functional. Soviet Mathematical Doklady. 11: 1194–1195
JE. Martinez-Legaz A. Seeger (1992) ArticleTitleA formula on the approximata subdifferential of the difference of convex functions Bulletin of the Australian Mathematical Society. 45 37–41 Occurrence Handle10.1017/S0004972700036984
Martínez-Legaz JE. M. Volle (1999) ArticleTitleDuality in D.C.programming : The case of several D.C. constraints Journal of Mathematical Analysis Application. 237 657–671
Michelot C. (1987). Caractérisation des minima locaux des fonctions de la classe D.C. Université de Dijon.
W. Oettli (1995) ArticleTitleKolmogorov conditions for minimizing vectorial optimization problems OR Spektrum. 17 227–229 Occurrence Handle10.1007/BF01720979
JP. Penot M. Théra (1982) ArticleTitleSemi-continuous mappings in general topology. Arch-Mathematical. 38 158–166
JP. Penot (2001) ArticleTitleDuality for anticonvex programs Journal of Global optimization. 19 163–182 Occurrence Handle10.1023/A:1008327614099
C. Raffin (1969) Contribution á l’ étude des programmes convexes définis dans des espaces vectoriels topologiques Thése Paris.
R.T. Rockafellar (1969) Convex Analysis Princeton University Press New Jersey.
R.T. Rockafellar (1980) ArticleTitleGeneralized directional derivatives ans subgradients of non-convex functions Canadian Journal of Mathematical. 32 175–180
P.D. Tao L.T. Hoai An (1997) ArticleTitleConvex analysis approach to D.C. programming: Theory, algorithms and applications. Acta Mathematica Vietnamica. 22 289–355
Tao PD., Souad EB. (1988). Duality in D.C. optimization. Subgradient methods Trends in mathematical optimization. Internat. Ser. Numer. Math. 84(c), Birkhauser Verlag, Bassel, pp. 277–293.
P.T. Thach (1993) ArticleTitleGlobal optimality criterions and duality with zero gap in nonconvex optimization problems SIAM Journal of Mathematical Analaysis. 24 1537–1556
H. Tuy (1995) D.C. Optimization: Theory, Methods and Algorithms, Handbook of Global Optimization Kluwer Academic Publishers Norwell 149–216
H. Tuy W. Oettly (1994) ArticleTitleOn necessary and sufficient conditions for global optimality Revista de Mathématicas Aplicadas. 15 39–41
M. Valadier (1972) ArticleTitleSous-différentiabilité de fonctions convexes àvaleurs dans un espace vectoriel ordonné. Math Scand. 30 65–74
Author information
Authors and Affiliations
Corresponding authors
Additional information
Mathematics Subject Classifications (1991). Primary 90C29, Secondary 49K30.
Rights and permissions
About this article
Cite this article
Gadhi, N., Laghdir, M. & Metrane, A. Optimality Conditions for D.C. Vector Optimization Problems Under Reverse Convex Constraints. J Glob Optim 33, 527–540 (2005). https://doi.org/10.1007/s10898-004-8318-4
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10898-004-8318-4