Skip to main content
Log in

Symbolic Interval Inference Approach for Subdivision Direction Selection in Interval Partitioning Algorithms

  • Original Paper
  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In bound constrained global optimization problems, partitioning methods utilizing Interval Arithmetic are powerful techniques that produce reliable results. Subdivision direction selection is a major component of partitioning algorithms and it plays an important role in convergence speed. Here, we propose a new subdivision direction selection scheme that uses symbolic computing in interpreting interval arithmetic operations. We call this approach symbolic interval inference approach (SIIA). SIIA targets the reduction of interval bounds of pending boxes directly by identifying the major impact variables and re-partitioning them in the next iteration. This approach speeds up the interval partitioning algorithm (IPA) because it targets the pending status of sibling boxes produced. The proposed SIIA enables multi-section of two major impact variables at a time. The efficiency of SIIA is illustrated on well-known bound constrained test functions and compared with established subdivision direction selection methods from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berner S. (1996). New results on verified global optimization. Computing 57:323–343

    Article  Google Scholar 

  • Breiman L., Cutler A. (1993). A deterministic algorithm for global optimization. Math. Program. 58:179–199

    Article  Google Scholar 

  • Casado L.G., Martinez J.A., García I. (2001). Experiments with a new selection criterion in a fast interval optimization algorithm. J. Global Optimiz. 19:247–264

    Article  Google Scholar 

  • Ceberio M., Granvilliers L. (2000). Solving nonlinear systems by constraint inversion and interval arithmetic. Lecture Note Arti. Intell. 1930:127–141

    Google Scholar 

  • Csallner A.E., Csendes T., Markót M.Cs. (2000a). Multi-section in interval branch and bound methods for global optimization I. Numerical Tests. J. Global Optimiz. 16:219–228

    Article  Google Scholar 

  • Csallner A.E., Csendes T., Markót M.Cs. (2000b). Multi-section in interval branch and bound methods for global optimization II Theoretical Results. J. Global Optimiz. 16:371–392

    Article  Google Scholar 

  • Csendes T., Klatte R., Ratz D. (2000). A Posteriori Direction Selection rules for interval optimization methods. Central Eur. J. Operation Res. 8:225–236

    Google Scholar 

  • Csendes T., Ratz D. (1996). A review of subdivision selection in interval methods for global optimization. ZAMM Z. Angew. Math. Mech. 76:319–322

    Google Scholar 

  • Csendes T., Ratz D. (1997). Subdivision direction selection in interval methods for global optimization. SIAM J. Numer. Anal. 34:922–938

    Article  Google Scholar 

  • De Jong K. (1975). An analysis of the behaviour of a class of genetic adaptive systems. PhD Thesis, University of Michigan, Ann Arbor

    Google Scholar 

  • Granvilliers L. (2004). An interval component for continuous constraints. J. Comput. Appl. Math. 162:79–92

    Article  Google Scholar 

  • Granvilliers, L., Monfroy, E., Benhamou, F.: Symbolic-interval cooperation in constraint programming. Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation. London, Canada (2001)

  • Hammer, R., Hocks, M., Kulish, U., Ratz, D.: Numerical Toolbox for Verified computing I Berlin (1993).

  • Hansen E. (1992). Global optimization using interval analysis. Marcel Dekker, New York

    Google Scholar 

  • Jansson C., Knüppel O. (1995). A branch and bound algorithm for bound constrained global optimization. J. Global Optimiz. 7:297–331

    Article  Google Scholar 

  • Kearfott B. (1979). An efficient degree-computation method for a generalized method of bisection. Numeric. Math. 32:109–127

    Article  Google Scholar 

  • Kearfott B., Kreinovich V. (1996). Applications of Interval Computations, Applied Optimization. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Knüppel O. (1994). PROFIL/BIAS—A fast interval library. Computing 53:277–287

    Article  Google Scholar 

  • Levy A.V., Montalvo A., Gomez S., Calderon A. (1982). Topics in global optimization. Lecture Note. Math. 909:18–33

    Article  Google Scholar 

  • Lhomme O., Gotlieb A., Rueher M. (1998). Dynamic optimization of interval narrowing algorithms. J. Logic Program. 37:165–183

    Article  Google Scholar 

  • Moore R.E. (1966). Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Moré J.J., Garbow B.S., Hillstrom K.E. (1981). Testing unconstrained optimization software. ACM Trans. Math. Software 7:17–41

    Article  Google Scholar 

  • Neumaier, A.: Interval Methods for Systems of Equations, Encyclopedia of Mathematics and its Applications, 37. Cambridge University Press, Cambridge (1990)

  • Özdamar L., Demirhan M. (2000). Experiments with new probabilistic search methods in global optimization. Comput. Operations Res. 27:841–865

    Article  Google Scholar 

  • Pintér J. (1992). Convergence qualification of adaptive partitioning algorithms in global optimization. Math. Program. 56:343–360

    Article  Google Scholar 

  • Ratschek H., Rokne J. (1995). Interval methods. In: Horst R., Pardalos P.M. (eds) Handbook of Global Optimization. Kluwer, Dordrecht, pp 751–828

    Google Scholar 

  • Ratschek H., Rokne J. (1988). New Computer Methods for Global Optimization. John Wiley, New York

    Google Scholar 

  • Ratz D. (1992). Automatische Ergebnisverifikation bei globalen Optimierungsproblemen. Dissertation, Universität Karlsruhe, Germany

    Google Scholar 

  • Ratz D., Csendes T. (1995). On the selection of subdivision directions in Interval Branch-and-Bound Methods for Global Optimization. J. Global Optimiz. 7:183–207

    Article  Google Scholar 

  • Rosenbrock H.H. (1970). State-Space and Multivariable Theory. Wiley, New York

    Google Scholar 

  • Sam-Haroud D., Faltings B. (1996). Consistency techniques for continuous constraints. Constraints 1:85–118

    Article  Google Scholar 

  • Schichl H., Neumaier A. (2005). Interval analysis on directed acyclic graphs for global optimization. J. Global Optimiz. 33:541–562

    Article  Google Scholar 

  • Schittkowski, K.: More Test Examples for Nonlinear Programming Codes. Lecture Notes in Economics and Mathematical Systems, vol. 282. Springer-Verlag, Berlin (1987)

  • Schwefel H.P. (1981). Numerical Optimization of Computer Models. Wiley, New York

    Google Scholar 

  • Törn A., Žilinskas A. (1989). Global Optimization. Lecture Notes in Computer Science, vol. 350. Springer-Verlag, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Csendes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedamallu, C.S., Özdamar, L. & Csendes, T. Symbolic Interval Inference Approach for Subdivision Direction Selection in Interval Partitioning Algorithms. J Glob Optim 37, 177–194 (2007). https://doi.org/10.1007/s10898-006-9043-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-006-9043-y

Keywords

Navigation