Skip to main content
Log in

Geometric dual formulation for first-derivative-based univariate cubic L 1 splines

  • Original Paper
  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

With the objective of generating “shape-preserving” smooth interpolating curves that represent data with abrupt changes in magnitude and/or knot spacing, we study a class of first-derivative-based \(\mathcal{C}^1\)-smooth univariate cubic L 1 splines. An L 1 spline minimizes the L 1 norm of the difference between the first-order derivative of the spline and the local divided difference of the data. Calculating the coefficients of an L 1 spline is a nonsmooth non-linear convex program. Via Fenchel’s conjugate transformation, the geometric dual program is a smooth convex program with a linear objective function and convex cubic constraints. The dual-to-primal transformation is accomplished by solving a linear program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Boor C. (1974) A remark concerning perfect splines. Bull. Amer. Math. Soc. 80, 724–727

    Google Scholar 

  2. de Boor C. (1976) On “best” interpolation. J. Approx. Theory 16, 28–42

    Article  Google Scholar 

  3. de Boor C. (1978) A Practical Guide to Splines. Springer-Verlag, New York-Berlin

    Google Scholar 

  4. Braess D. (1986) Nonlinear Approximation Theory. Springer-Verlag, Berlin

    Google Scholar 

  5. Cheng H., Fang S.-C., Lavery J.E. (2002) Univariate cubic L 1 splines—a geometric programming approach. Math. Methods Oper. Res. 56, 197–229

    Article  Google Scholar 

  6. Cheng H., Fang S.-C., Lavery J.E. (2004) An efficient algorithm for generating univariate cubic L 1 splines. Comput. Optim. Appl 29, 219–253

    Article  Google Scholar 

  7. Cheng H., Fang S.-C., Lavery J.E. (2005) A geometric programming framework for univariate cubic L 1 smoothing splines. Ann. Oper. Res. 133, 229–248

    Article  Google Scholar 

  8. Cheng H., Fang S.-C., Lavery J.E. (2005) Shape-preserving properties of univariate cubic L 1 splines. J. Comput. Appl. Math. 174, 361–382

    Article  Google Scholar 

  9. Copley P., Schumaker L.L. (1978) On pLg-splines. J. Approx. Theory 23, 1–28

    Article  Google Scholar 

  10. DeVore R.A., Lorentz G.G. (1993) Constructive Approximation. Springer-Verlag, New York

    Google Scholar 

  11. Fang S.-C., Puthenpura S. (1993) Linear Optimization and Extensions: Theory and Algorithms. Prentice Hall, NJ

    Google Scholar 

  12. Fisher S.D., Jerome J.W. (1975) Spline solutions to L 1 extremal problems in one and several variables. J. Approx. Theory 13, 73–83

    Article  Google Scholar 

  13. Holladay J.C. (1957) A smoothest curve approximation. Math. Tables Aids Comput. 11, 233–243

    Article  Google Scholar 

  14. Karlin S. (1975) Interpolation properties of generalized perfect splines and the solutions of certain extremal problems. Trans. Amer. Math. Soc. 206, 25–66

    Article  Google Scholar 

  15. Lavery J.E. (1989) Solution of steady-state one-dimensional conservation laws by mathematical programming. SIAM J. Numer. Anal. 26, 1081–1089

    Article  Google Scholar 

  16. Lavery J.E. (2000) Univariate cubic L p splines and shape-preserving, multiscale interpolation by univariate cubic L 1 splines. Comput. Aided Geom. Design 17, 319–336

    Article  Google Scholar 

  17. Lavery J.E. (2000) Shape-preserving, multiscale fitting of univariate data by cubic L 1 smoothing splines. Comput. Aided Geom. Design 17, 715–727

    Article  Google Scholar 

  18. Lavery J.E. (2004) Shape-preserving approximation of multiscale univariate data by cubic L 1 spline fits. Comput. Aided Geom. Design 21, 43–64

    Article  Google Scholar 

  19. Lavery J.E. (2006) Shape-preserving, first-derivative-based parametric and nonparametric cubic L 1 spline curves. Comput. Aided Geom. Design 23, 276–296

    Article  Google Scholar 

  20. Mangasarian O.L., Schumaker L.L. (1971) Discrete splines via mathematical programming. SIAM J. Control 9, 174–183

    Article  Google Scholar 

  21. Nesterov, Y., Nemirovskii, A.: Interior Point Polynomial Algorithms in Convex Programming. SIAM Studies in Applied Mathematics, Vol. 13. SIAM, Philadelphia, USA (1994)

  22. Nürnberger G. (1989) Approximation by Spline Functions. Springer-Verlag, Berlin

    Google Scholar 

  23. Peterson E.L. (1976) Geometric programming. SIAM Rev. 18, 1–51

    Article  Google Scholar 

  24. Pinkus A. (1988) On smoothest interpolants. SIAM J. Math. Anal. 19, 1431–1441

    Article  Google Scholar 

  25. Powell M.J.D. (1981) Approximation Theory and Methods. Cambridge University Press, Cambridge

    Google Scholar 

  26. Rockafellar R.T. (1970) Convex Analysis. Princeton University Press, Princeton, NJ

    Google Scholar 

  27. Schoenberg I.J. (1964) Spline interpolation and best quadrature formulate. Bull Amer. Math. Soc. 70, 143–148

    Article  Google Scholar 

  28. Shor N. (1998) Nondifferentiable Optimization and Polynomial Problems Book Series of Non-convex Optimization and Its Applications, Vol. 24. Kluwer, Boston

    Google Scholar 

  29. Späth H. (1995) One Dimensional Spline Interpolation Algorithms. A.K. Peters, Wellesley, MA

    Google Scholar 

  30. Wang, Y., Fang, S.-C., Lavery, J.E.: A compressed primal-dual method for generating bivariate cubic L 1 splines J. Comput. Appl. Math. (to appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.-C. Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y.B., Fang, SC. & Lavery, J.E. Geometric dual formulation for first-derivative-based univariate cubic L 1 splines. J Glob Optim 40, 589–621 (2008). https://doi.org/10.1007/s10898-006-9124-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-006-9124-y

Keywords

Navigation