Skip to main content
Log in

Computing exact solution to nonlinear integer programming: Convergent Lagrangian and objective level cut method

  • Original Paper
  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we propose a convergent Lagrangian and objective level cut method for computing exact solution to two classes of nonlinear integer programming problems: separable nonlinear integer programming and polynomial zero-one programming. The method exposes an optimal solution to the convex hull of a revised perturbation function by successively reshaping or re-confining the perturbation function. The objective level cut is used to eliminate the duality gap and thus to guarantee the convergence of the Lagrangian method on a revised domain. Computational results are reported for a variety of nonlinear integer programming problems and demonstrate that the proposed method is promising in solving medium-size nonlinear integer programming problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balas E. (1965). An additive algorithm for solving linear programs with zero-one variables. Oper. Res. 13: 517–546

    Google Scholar 

  2. Balas E. and Mazzola J.B. (1984a). Nonlinear 0-1 programming: I. Linearization techniques. Math. Program. 30: 1–21

    Article  Google Scholar 

  3. Balas E. and Mazzola J.B. (1984b). Nonlinear 0–1 programming: II. Dominance relations and algorithms. Math. Program. 30: 22–45

    Google Scholar 

  4. Bell D.E. and Shapiro J.F. (1977). A convergent duality theory for integer programming. Oper. Res. 25: 419–434

    Google Scholar 

  5. Benson H.P. and Erenguc S.S. (1990). An algorithm for concave integer minimization over a polyhedron. Nav. Res. Logist. 37: 515–525

    Article  Google Scholar 

  6. Bretthauer K.M., Cabot A.V. and Venkataramanan M.A. (1994). An algorithm and new penalties for concave integer minimization over a polyhedron. Nav. Res. Logist. 41: 435–454

    Article  Google Scholar 

  7. Bretthauer K.M. and Shetty B. (1995). The nonlinear resource allocation problem. Oper. Res. 43: 670–683

    Google Scholar 

  8. Bretthauer K.M. and Shetty B. (2002). A pegging algorithm for the nonlinear resource allocation problem. Comput. Oper. Res. 29: 505–527

    Article  Google Scholar 

  9. Chern M.S. (1992). On the computational complexity of reliability redundancy allocation in a series system. Oper. Res. Lett. 11: 309–315

    Article  Google Scholar 

  10. Dantzig G.B. (1960). On the significance of solving linear programming with some integer variables. Econometrica 28: 30–40

    Article  Google Scholar 

  11. Fisher M.L. (1981). The Lagrangian relaxation method for solving integer programming problems. Manage. Sci. 27: 1–18

    Google Scholar 

  12. Fisher M.L. and Shapiro J.F. (1974). Constructive duality in integer programming. SIAM J. Appl. Math. 27: 31–52

    Article  Google Scholar 

  13. Floudas, C.A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford University Press, Oxford (1995)

  14. Fortet, R.: L′algèbre de Boole et ses applications en recherche Opérationnelle. Cah. Centre d’ Étud. Rech. Opér. 1, 5–36 (1959)

  15. Fortet and R. (1960). Applications de l′algèbre de Boole en recherche Opérationnelle. Rev. Fr. d’ Inform. Rech. Opér. 4: 17–26

    Google Scholar 

  16. Geoffrion A.M. (1967). Integer programming by implicit enumeration and Balas’ method. SIAM Rev. 9: 178–190

    Article  Google Scholar 

  17. Geoffrion A.M. (1974). Lagrangean relaxation for integer programming. Math. Program. Study 2: 82–114

    Google Scholar 

  18. Granot F. and Hammer P.L. (1975). On the role of generalized covering problems. Cah. Centre d’ Étud. Rech. Opèr. 17: 277–289

    Google Scholar 

  19. Grossmann I.E., Kravanja Z.: Mixed-integer nonlinear programming: a survey of algorithms and applications. In: Biegler, L.T., Coleman, T.F., Conn, A.R. and F. N. Santosa (eds.) Large-Scale optimization with Applications, Part II: Optimization Design and Control. Springer, Berlin, Heidelberg, New york (1997)

  20. Hansen P. (1979). Methods of nonlinear 0-1 programming. Ann. Discrete Math. 5: 53–70

    Google Scholar 

  21. Hansen P., Jaumard B. and Mathon V. (1993). Constrained nonlinear 0-1 programming. ORSA J. Comput. 5: 97–119

    Google Scholar 

  22. Helmberg C. and Rendl F. (1998). Solving quadratic (0,1)-problems by semidefinite programs and cutting planes. Math. Program. 82: 291–315

    Google Scholar 

  23. Hochbaum D.S. (1995). A nonlinear Knapsack problem. Oper. Res. Lett. 17: 103–110

    Article  Google Scholar 

  24. Horst R. and Thoai N.V. (1998). An integer concave minimization approach for the minimum concave cost capacitated flow problem on networks. OR Spektrum 20: 47–53

    Article  Google Scholar 

  25. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin, Heidelberg, New york (1993)

  26. Ibaraki T. and Katoh N. (1988). Resource Allocation Problems: Algorithmic Approaches. MIT Press, Cambridge, MA

    Google Scholar 

  27. Lemaréchal C. and Renaud A. (1998). A geometric study of duality gaps, with applications. Math. Program 90: 399–427

    Article  Google Scholar 

  28. Li D. and Sun X.L. (2000). Success guarantee of dual search in integer programming: p-th power Lagrangian method. J. Glob. Optim. 18: 235–254

    Article  Google Scholar 

  29. Li D. and Sun X.L. (2006). Towards strong duality in integer programming. J. Glob. Optim. 35: 255–282

    Article  Google Scholar 

  30. Li D. and White D.J. (2000). P-th power Lagrangian method for integer programming. Ann. Oper. Res. 98: 151–170

    Article  Google Scholar 

  31. Marsten R.E. and Morin T.L. (1978). A hybrid approach to discrete mathematical programming. Math. Program. 14: 21–40

    Article  Google Scholar 

  32. McCormick G.P. (1975). Computability of global solutions to factorable nonconvex programs: part I convex underestimating problems. Math. Program. 10: 147–175

    Article  Google Scholar 

  33. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)

  34. Parker, R.G., Rardin, R.L.: Discrete Optimization. Academic, Boston (1988)

  35. Poljak S., Rendl F. and Wolkoswicz H. (1995). A recipe for semidefinite relaxation for 0-1 quadratic programming. J. Glob. Optim. 7: 51–73

    Article  Google Scholar 

  36. Roelofs, M., Bisschop, J.: AIMMS user’s Guide. Paragon Decision Technology. http://www.aimms.com/aimms/download/manuals/AIMMS_ 3UG.pdf (2006)

  37. Ryoo H.S. and Sahinidis N.V. (2001). Analysis of bounds for multilinear functions. J. Glob. Optim. 19: 403–424

    Article  Google Scholar 

  38. Ryoo H.S. and Sahinidis N.V. (2003). Global optimization of multilinear problems. J. Glob. Optim. 26: 387–418

    Article  Google Scholar 

  39. Sahinidis, N.V.: BARON: branch and reduce optimization navigator, user’s manual ver. 4.0. Department of Chemical Engineering, University of Illinois at Urbana Champaign. http://archimedes.scs.uiuc.edu/baron/manuse.pdf (2000)

  40. Shapiro J.F. (1979). A survey of lagrangian techniques for discrete optimization. Ann. Discrete Math. 5: 113–138

    Article  Google Scholar 

  41. Sherali H.D. (1997). Convex envelopes of multilinear functions over a unit hypercube and over special discrete sets. Acta Math. Vietnam 22: 245–270

    Google Scholar 

  42. Sherali H.D. (1998). Global optimization of nonconvex polynomial programming problems having rational exponents. J. Glob. Optim. 12: 267–283

    Article  Google Scholar 

  43. Sherali H.D. and Wang H. (2001). Global optimization of nonconvex factorable programming problems. Math. Program. 89: 459–478

    Article  Google Scholar 

  44. Smith E.M. and Pantelides C.C. (1997). Global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 21: S791–S796

    Google Scholar 

  45. Sun X.L. and Li D. (2000). Asymptotic strong duality for bounded integer programming: a logarithmic-exponential dual formulation. Math. Oper. Res. 25: 625–644

    Article  Google Scholar 

  46. Sun X.L. and Li D. (2002). Optimality condition and branch and bound algorithm for constrained redundancy optimization in series systems. Optim. Eng. 3: 53–65

    Article  Google Scholar 

  47. Taha H.A. (1972). A Balasian-based algorithm for zero-one polynomial programming. Manage. Sci. 18: B328–B343

    Google Scholar 

  48. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer Academic Publishers, Dordrecht (2002)

  49. Tawarmalani M. and Sahinidis N.V. (2004). Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99: 563–591

    Article  Google Scholar 

  50. Watters L.J. (1967). Reduction of integer polynomial programming problems to zero-one linear programming problems. Oper. Res. 15: 1171–1174

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Wang, J. & Sun, X.L. Computing exact solution to nonlinear integer programming: Convergent Lagrangian and objective level cut method. J Glob Optim 39, 127–154 (2007). https://doi.org/10.1007/s10898-006-9128-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-006-9128-7

Keywords

Navigation