Skip to main content
Log in

New bounds on the unconstrained quadratic integer programming problem

  • Original Paper
  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We consider the maximization \(\gamma = \max\{x^{T}\!Ax : x\in \{-1, 1\}^n\}\) for a given symmetric \(A\in\mathcal{R}^{n\times n}\). It was shown recently, using properties of zonotopes and hyperplane arrangements, that in the special case that A has a small rank, so that A = VV T where \(V\in\mathcal{R}^{n\times m}\) with m < n, then there exists a polynomial time algorithm (polynomial in n for a given m) to solve the problem \(\max\{x^TV V^Tx : x\in \{-1, 1\}^n\}\). In this paper, we use this result, as well as a spectral decomposition of A to obtain a sequence of non-increasing upper bounds on γ with no constraints on the rank of A. We also give easily computable necessary and sufficient conditions for the absence of a gap between the solution and its upper bound. Finally, we incorporate the semidefinite relaxation upper bound into our scheme and give an illustrative example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alizadeh, F.: Combinatorial optimization with semidefinite matrices. In: Proceedings of the second annual integer programming and combinatorial optimization conference, Carnegie–Mellon University (1992)

  2. Allemand K., Fukuda K., Liebling T.M. and Steiner E. (2001). A polynomial case of unconstrained zero–one quadratic optimization. Math. Prog. Ser. A. 91: 49–52

    Google Scholar 

  3. Avis D. and Fukuda K. (1996). Reverse search for enumeration. Discrete Appl. Math. 65: 21–46

    Article  Google Scholar 

  4. Balas E., Ceria S. and Cornuejols G. (1993). A lift-and-project cutting plane algorithm for mixed 0-1 programs. Math. Prog. 58: 295–324

    Article  Google Scholar 

  5. Buck R.C. (1943). Partition of space. Am. Math. Monthly. 50: 541–544

    Article  Google Scholar 

  6. Delorme C. and Poljak S. (1993). Laplacian eigenvalues and the maximum–cut problem. Math. Prog. 62(3): 557–574

    Article  Google Scholar 

  7. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer Verlag (1987)

  8. Edelsbrunner H., O’Rourke J. and Seidel R. (1986). Constructing arrangements of lines and hyperplanes with applications. SIAM J. Comput. 15(2): 341–363

    Article  Google Scholar 

  9. Ferrez, J.A., Fukuda, K., Liebling, T.M.: Cuts, zonotopes and arrangements. In: Festschrift, P. (ed.), The Sharpest Cut. SIAM Series on Optimization (2001)

  10. Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gumus, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization. Kluwer Academic Publishers (1999)

  11. Garey M.R. and Johnson D.S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman San Francisco, CA

    Google Scholar 

  12. Gungah, S.K.: Maximally Robust Controllers for a Class of Unstructured Uncertainty. PhD thesis, Imperial College, University of London (1999)

  13. Gungah S.K., Halikias G.D. and Jaimoukha I.M. (2000). Maximally robust controllers for multivariable systems. SIAM J. Control and Optim. 38(6): 1805–1829

    Article  Google Scholar 

  14. Gungah, S.K., Halikias, G.D., Jaimoukha, I.M.: Maximally robust controllers for multivariable systems. In: Proc. IEEE Conf. Dec. & Control, pp. 595–600 (2000)

  15. Gungah, S.K., Malik, U., Jaimoukha, I.M., Halikias, G.D.: A new upper bound for the real structured singular value. In Proc. IEEE Conf. Dec. & Control, pp. 247–248, Florida (2001)

  16. Jaimoukha I.M., Halikias G.D., Malik U. and Gungah S.K. (2006). On the gap between the complex structured singular value and its convex upper bound. SIAM J. Control Optim. 45(4): 1251–1278

    Article  Google Scholar 

  17. Lovasz L. and Shrijver A. (1991). Cones of matrices and set–functions and 0–1 optimization. SIAM J Optim. 1(2): 166–190

    Article  Google Scholar 

  18. Malik, U.: New Bounds for the Structured Singular Value. PhD thesis, Imperial College, University of London (2003)

  19. Malik U., Jaimoukha I.M., Halikias G.D. and Gungah S.K. (2006). On the gap between the quadratic integer programming problem and its semidefinite relaxation. Math. Prog. Series A 107(3): 505–515

    Article  Google Scholar 

  20. Onn S. and Schulman L.J. (2001). The vector partition problem for convex objective functions. Math. Oper. Res. 26(3): 583–590

    Article  Google Scholar 

  21. Poljak S., Rendl F. and Wolkowicz H. (1995). A recipe for semidefinite relaxation for (0,1)-quadratic programming. J. Global Optim. 7(1): 51–73

    Article  Google Scholar 

  22. Poljak S. and Wolkowicz H. (1982). Convex relaxation of (0,1)–quadratic programming. Math. Oper. Res. 20(3): 550–561

    Article  Google Scholar 

  23. (2000). Handbook of Semidefinite Programming: Theory, Algorithms and Applications. Kluwer Academic Publishers, Boston, MA

    Google Scholar 

  24. Zaslavsky T. (1975). Facing up to arrangements: face–count formulas for partitions of space by hyperplanes. Mem. Am. Math. Soc. 154(5): 585–600

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Jaimoukha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halikias, G.D., Jaimoukha, I.M., Malik, U. et al. New bounds on the unconstrained quadratic integer programming problem. J Glob Optim 39, 543–554 (2007). https://doi.org/10.1007/s10898-007-9155-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-007-9155-z

Keywords

Navigation