Skip to main content

Advertisement

Log in

Box-constrained quadratic programs with fixed charge variables

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Recent work has demonstrated the potential for globally optimizing nonconvex quadratic programs using a reformulation based on the first order optimality conditions. We show how this reformulation may be generalized to account for fixed cost variables. We then extend some of the polyhedral work that has been done for bound constrained QPs to handle such fixed cost variables. We show how to lift known classes of inequalities for the case without fixed cost variables and propose several new classes. These inequalities are incorporated in a branch-and-cut algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aardal K. (1998). Capacitated facility location: separation algorithms and computational experience. Math. Program. 81(2, Ser. B): 149–175

    Article  Google Scholar 

  2. Atamtürk A. (2001). Flow pack facets of the single node fixed-charge flow polytope. Oper. Res. Lett. 29(3): 107–114

    Article  Google Scholar 

  3. Balas E. (1975). Nonconvex quadratic programming via generalized polars. SIAM J. Appl. Math. 28: 335–349

    Article  Google Scholar 

  4. Barany I., Van Roy T.J. and Wolsey L.A. (1984). Strong formulations for multi-item capacitated lotsizing. Manage. Sci. 30: 1255–1261

    Google Scholar 

  5. Bomze I.M. and Danninger G. (1994). A finite algorithm for solving general quadratic problems. GOP 4: 1–16

    Google Scholar 

  6. Christof, T., Löbel, A.: PORTA: a polyhedron representation transformation algorithm.http://www.zib.de/Optimization/Software/Porta/ (1997)

  7. Crowder H., Johnson E.L. and Padberg M.W. (1983). Solving large scale zero-one integer programming problems. Oper. Res. 31: 803–834

    Google Scholar 

  8. Johnson E.L. and Nemhauser G.L. (2002). Facets of the complementarity knapsack polytope. Math. Oper. Res. 27: 210–226

    Article  Google Scholar 

  9. Giannessi, F., Tomasin, E.: Nonconvex quadratic programs, linear complementarity problems, and integer linear programs. In: Proceeding of the 5th Conference on Optimization Techniques (Rome, 1973), Part I. Lecture Notes in Computer Science, vol. 3, pp. 437–449. Springer, Berlin (1973)

  10. Grossmann, I.E., Kravanja, Z.: Mixed-integer nonlinear programming: a survey of algorithms and applications. In: Biegler, L.T., Coleman, T.F., Conn, A.R., Santosa, F.N. (eds.) Large-scale optimization with applications, Part II (Minneapolis, MN, 1995), vol. 93 of IMA Vol. Math. Appl., pp. 73–100. Springer, New York (1997)

  11. Gu Z., Nemhauser G.L. and Savelsbergh M.W.P. (1999). Lifted flow cover inequalities for mixed 0-1 integer programs. Math. Program. 85(3, Ser. A): 439–467

    Article  Google Scholar 

  12. Hansen P., Jaumard B., Ruiz M. and Xiong J. (1993). Global minimization of indefinite quadratic functions subject to box constraints. Nav. Res. Logist. 40: 373–392

    Article  Google Scholar 

  13. Huang H., Pardalos P.M. and Prokopyev O.A. (2006). Lower bound improvement and forcing rule for quadratic binary programming. Comput. Optim. Appl. 33(2–3): 187–208

    Article  Google Scholar 

  14. ILOG, Inc. ILOG CPLEX 9.0, User Manual (2003)

  15. Lin, T.C., Vandenbussche, D.: Box-constrained quadratic programs with fixed charge variables. Technical report, Department of Mechanical and Industrial Engineering, University of Illinois Urbana-Champaign. https://netfiles.uiuc.edu/dieterv/www/publications.html. (2006)

  16. Motzkin T.S. and Straus E.G. (1965). Maxima for graphs and a new proof of a theorem of Turán. Can. J. Math. 17: 533–540

    Google Scholar 

  17. Nemhauser G.L., Savelsbergh M.W.P. and Sigismondi G.S. (1994). MINTO, a mixed INTeger optimizer. Oper. Res. Lett. 15: 47–58

    Article  Google Scholar 

  18. Nowak I. (2000). Dual bounds and optimality cuts for all-quadratic programs with convex constraints. J. Glob. Optim. 18(4): 337–356

    Article  Google Scholar 

  19. Padberg M. (1989). The Boolean quadric polytope: some characteristics, facets and relatives. Math. Program. 45: 139–172

    Article  Google Scholar 

  20. Padberg M.W., Van Roy T.J. and Wolsey L.A. (1985). Valid linear inequalities for fixed charge problems. Oper. Res. 33: 842–861

    Article  Google Scholar 

  21. Pardalos P.M. and Rodgers G.P. (1990a). Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 45(2): 131–144

    Article  Google Scholar 

  22. Pardalos P.M. and Rodgers G.P. (1990b). Parallel branch and bound algorithms for quadratic zero-one programs on the hypercube architecture. Ann. Oper. Res. 22(1–4): 271–292

    Article  Google Scholar 

  23. Pardalos P.M., Chaovalitwongse W., Iasemidis L.D., Sackellares C.J., Shiau D., Carney P.R., Prokopyev O.A. and Yatsenko V.A. (2004). Seizure warning algorithm based on optimization and nonlinear dynamics. Math. Program. 101(2, Ser. B): 365–385

    Article  Google Scholar 

  24. Phillips A.T. and Rosen J.B. (1990). Guaranteed ε-approximate solution for indefinite quadratic global minimization. Nav. Res. Logist. 37(4): 499–514

    Article  Google Scholar 

  25. Revelle C. (1999). Optimizing Reservoir Resources. Wiley, New York

    Google Scholar 

  26. Rosenberg I.G. (1972). 0-1 optimization and nonlinear programming. Rev. Fr. Autom. Inf. Rech. Opérationnelle 6: 95–97

    Google Scholar 

  27. Sahinidis N.V. (1996). BARON: a general purpose global optimization software package. J. Glob. Optim. 8: 201–205

    Article  Google Scholar 

  28. Sahinidis, N.V., Tawarmalani, M.: BARON 7.5: global optimization of mixed-integer nonlinear programs, User’s Manual. Available at http://www.gams.com/dd/docs/solvers/baron.pdf. (2006)

  29. Sherali H.D. and Tuncbilek C.H. (1995). A reformulation-convexification approach for solving nonconvex quadratic programming problems. J. Glob. Optim. 7: 1–31

    Article  Google Scholar 

  30. Vandenbussche D. and Nemhauser G. (2005a). A polyhedral study of nonconvex quadratic programs with box constraints. Math. Program. 102(3): 531–557

    Article  Google Scholar 

  31. Vandenbussche D. and Nemhauser G. (2005b). A branch-and-cut algorithm for nonconvex quadratic programs with box constraints. Math. Program. 102(3): 559–575

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Vandenbussche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, TC., Vandenbussche, D. Box-constrained quadratic programs with fixed charge variables. J Glob Optim 41, 75–102 (2008). https://doi.org/10.1007/s10898-007-9167-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-007-9167-8

Keywords

Navigation