Skip to main content
Log in

Hölder continuity of solutions to elastic traffic network models

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper aims to study stability and sensitivity analysis for quasi-variational inequalities which model traffic network equilibrium problems with elastic travel demand. In particular, we provide a Hölder stability result under parametric perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adly S., Ait Mansour M. and Scrimali L. (2005). Sensitivity analysis of solutions to a class of quasi-variational inequalities. Bollettino dell’Unione Matematica Italiana, Sezione B 8(8): 767–771

    Google Scholar 

  2. Ait Mansour M. and Riahi H. (2005). Sensitivity analysis for abstract equilibrium problems. J. Math. Anal. Appl. 306: 684–691

    Article  Google Scholar 

  3. Aubin J.-P. (1984). Lipschitz behavior of solutions to convex minimization problems. Math. Oper. Res. 9: 87–111

    Google Scholar 

  4. Baiocchi F. and Capelo A. (1984). Variational and Quasivariational Inequalities. Application to Free Boundary Problems. Wiley, New York

    Google Scholar 

  5. Chang D. and Pang J.-S. (1982). The generalized quasi-variational inequality problem. Math. Oper. Res. 7: 211–222

    Article  Google Scholar 

  6. Cubiotti P. (1997). Generalized quasi-variational inequalities in infininite dimensional spaces. J. Optim. Theory Appl. 92: 457–475

    Article  Google Scholar 

  7. De Luca M. and Maugeri A. (1989). Quasi-variational inequality and applications to equilibrium problems with elastic demands. In: Clarke, F.M., Dem’yanov, V.F. and Giannessi, F. (eds) Non smooth Optimization and Related Topics, vol. 43., pp 61–77. Plenum Press, New York

    Google Scholar 

  8. De Luca M. (1997). Existence of solutions for a time-dependent quasi-variational inequality. Supplemento Rend. Circ. Mat. Palermo Serie 2(48): 101–106

    Google Scholar 

  9. Fiacco A.V. and McCormick G.P. (1984). Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Wiley, New York

    Google Scholar 

  10. Fiacco A.V. (1976). Sensitivity analysis for nonlinear programming using penality methods. Math. progam. 10: 287–311

    Article  Google Scholar 

  11. Fiacco A.V. (1983). An Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. Academic, New York

    Google Scholar 

  12. Kyparisis J. (1987). Sensitivity analysis framework for variational inequalities. Math. Program. 38: 203–213

    Article  Google Scholar 

  13. Mordukhovich B. (2006). Variational Analysis and Generalized Differentiation. Springer, New York

    Google Scholar 

  14. Robinson S.M. (1979). Generalized equations and their solutions, Part I: basic theory. Math. Program. Study 10: 128–141

    Google Scholar 

  15. Robinson S.M. (1980). Strongly regular generalized equations. Math. Oper. Res. 10: 43–62

    Google Scholar 

  16. Scrimali L. (2004). Quasi-variational inequalities in transportation networks. Math. Models Methods Appl. Sci. 14(10): 1541–1560

    Article  Google Scholar 

  17. Shapiro A. (1985). Second order sensitivity analysis and asymptotic theory of parametrized nonlinear onlinear programs. Math. Program. 33: 280–299

    Article  Google Scholar 

  18. Shapiro A. (2005). Sensitivity analysis of parameterized variational inequalities. Math. Oper. Res. 30: 109–126

    Article  Google Scholar 

  19. Smith M.J. (1979). The existence, uniqueness and stability of traffic equilibrium. Transport. Res. 138: 295–304

    Article  Google Scholar 

  20. Walkup D.W. and Wets R.J-B. (1969). A Lipschitzian of convex polyhedral. Proc. Am. Math. Soc. 23: 167–178

    Article  Google Scholar 

  21. Wardrop J.G.: Some theoretical aspects of road traffic research. Proc. Inst. Civil Eng. Part II 325–378 (1952)

  22. Yen N.D. (1995). Hölder continuity of solutions to a parametric variational inequality. Appl. Math. Optim. 31: 245–255

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Ait Mansour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansour, M.A., Scrimali, L. Hölder continuity of solutions to elastic traffic network models. J Glob Optim 40, 175–184 (2008). https://doi.org/10.1007/s10898-007-9190-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-007-9190-9

Keywords

Navigation