Skip to main content
Log in

Reference variable methods of solving min–max optimization problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, reference variable methods are proposed for solving nonlinear Minmax optimization problems with unconstraint or constraints for the first time, it uses reference decision vectors to improve the methods in Vincent and Goh (J Optim Theory Appl 75:501–519, 1992) such that its algorithm is convergent. In addition, a new method based on KKT conditions of min or max constrained optimization problems is also given for solving the constrained minmax optimization problems, it makes the constrained minmax optimization problems a problem of solving nonlinear equations by a complementarily function. For getting all minmax optimization solutions, the cost function f(x, y) can be constrained as M 1 < f(x, y) < M 2 by using different real numbers M 1 and M 2. To show effectiveness of the proposed methods, some examples are taken to compare with results in the literature, and it is easy to find that the proposed methods can get all minmax optimization solutions of minmax problems with constraints by using different M 1 and M 2, this implies that the proposed methods has superiority over the methods in the literature (that is based on different initial values to get other minmax optimization solutions).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi D.S. and Ling C. (1995). Minmax theorems and cone saddle point of uniformly same -order vector valued functions. J. Optim. Theory Appl. 84(3): 575–587

    Article  Google Scholar 

  2. Greco G.H. and Horvath C.D. (2002). A topological minimax theorem. J. Optim. Theory Appl. 113(3): 513–536

    Article  Google Scholar 

  3. Frenk J.F.B. and Kassay G. (2002). Minimax results and finite-dimensional separation. J. Optim. Theory Appl. 113(2): 409–421

    Article  Google Scholar 

  4. Ghosh M.K., McDonald D. and Sinha S. (2004). Zero-sum stochastic games with partial information. J. Optim. Theory Appl. 121(1): 99–118

    Article  Google Scholar 

  5. Frenk J.B.G., Kassay G. and Kolumban J. (2004). On equivalent results in minmax theory. Eur. J. Oper. Res. 157: 46–58

    Article  Google Scholar 

  6. Achtziger W. (1998). Multiple local truss topology and sizing optimization some properties of minmax compliance. J. Optim. Theory Appl. 98(2): 255–277

    Article  Google Scholar 

  7. Tan K.K. and Yu J. (1994). New minmax inequality with applications to existence theorems of equilibrium point. J. Optim. Theory Appl. 82(1): 105–120

    Article  Google Scholar 

  8. Polak E. and Royset J.O. (2003). Algorithms for finite and semi-infinite min–max–min problems using adaptive smoothing techniques. J. Optim. Theory Appl. 119(3): 421–457

    Article  Google Scholar 

  9. Polak E. and Royset J.O. (2003). Algorithms with adaptive smoothing for finite minimax problems. J. Optim. Theory Appl. 119(3): 459–484

    Article  Google Scholar 

  10. Yu Y.H. and Gao L. (2002). Nonmonotone line search algorithm for constrained minimax problems. J. Optim. Theory Appl. 115(2): 419–446

    Article  Google Scholar 

  11. Yu G. (1998). Min–max optimization of several classical discrete optimization problems. J. Optim. Theory Appl. 98(1): 221–242

    Article  Google Scholar 

  12. Frenk J.B.G., Gromicho J. and Zhang S. (1996). General models in minmax continuous localtion theory and solution thechniques. J. Optim. Theory Appl. 89(1): 39–63

    Article  Google Scholar 

  13. Vincent T.L. and Goh B.S. (1992). Trajectory-following algorithms for min–max optimization problem. J. Optim. Theory Appl. 75(3): 501–519

    Article  Google Scholar 

  14. Fischer A. (1998). New constrained optimization reformulation of complementarity problems. J. Optim. Theory Appl. 97(1): 105–117

    Article  Google Scholar 

  15. Pu D. and Tian W. (2002). Globally convergent inexact generalized Newton’s methods for nonsmooth equations. J. Comput. Appl. Math. 138: 37–49

    Article  Google Scholar 

  16. Neumaier A. (2001). Introduction to numerical analysis. New York Cambridge university press, Cambridge UK

    Google Scholar 

  17. Hernandez M.A. and Rubio M.J. (2004). A modification of Newton’s method for non-differentiable equations. J. Comput. Appl. Math. 164–165: 409–417

    Article  Google Scholar 

  18. Amat S., Busquier S. and Gutierrez J.M. (2003). Geometric constructions of iterative functions to solve nonlinear equations. J. Comput. Appl. Math. 157: 197–205

    Article  Google Scholar 

  19. Xiaojun C. (1997). Superlinear convergence of smoothing quasi-Newton methods for non-smooth equations. J. Comput. Appl. Math. 80: 105–126

    Article  Google Scholar 

  20. Xu J.-j. (1999). Convergence of partially asynchronous block quasi-Newton methods for nonlinear systems of equations. J. Comput. Appl. Math. 103: 307–321

    Article  Google Scholar 

  21. Andreas F. (1995). Asynchronous parallel for enclosing solutions of nonlinear equations. J. Comput. Appl. Math. 60: 47–62

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baiquan Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, B., Cao, Y., Yuan, M.j. et al. Reference variable methods of solving min–max optimization problems. J Glob Optim 42, 1–21 (2008). https://doi.org/10.1007/s10898-007-9191-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-007-9191-8

Keywords

Navigation