Skip to main content
Log in

Global optimization of signomial mixed-integer nonlinear programming problems with free variables

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Mixed-integer nonlinear programming (MINLP) problems involving general constraints and objective functions with continuous and integer variables occur frequently in engineering design, chemical process industry and management. Although many optimization approaches have been developed for MINLP problems, these methods can only handle signomial terms with positive variables or find a local solution. Therefore, this study proposes a novel method for solving a signomial MINLP problem with free variables to obtain a global optimal solution. The signomial MINLP problem is first transformed into another one containing only positive variables. Then the transformed problem is reformulated as a convex mixed-integer program by the convexification strategies and piecewise linearization techniques. A global optimum of the signomial MINLP problem can finally be found within the tolerable error. Numerical examples are also presented to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adjiman C.S., Androulakis I.P. and Floudas C.A. (1997). Global optimization of MINLP problems in process synthesis and design. Comput. Chem. Eng. 21: S445–S450 Suppl. S

    Google Scholar 

  2. Adjiman C.S., Androulakis I.P. and Floudas C.A. (2000). Global optimization of mixed-integer nonlinear problems. AIChE J. 46(9): 1769–1797

    Article  Google Scholar 

  3. Adjiman C.S., Androulakis I.P., Maranas C.D. and Floudas C.A. (1996). A global optimization method α BB for process design. Comput. Chem. Eng. 20: S419–S424 Suppl. A

    Article  Google Scholar 

  4. Aggarwal A. and Floudas C.A. (1990). Synthesis of general separation sequences-nonsharp separations. Comput. Chem. Eng. 14(6): 631–653

    Article  Google Scholar 

  5. Beale E.M.L. and Forrest J.J.H. (1976). Global optimization using special ordered sets. Math. Prog. 10: 52–69

    Article  Google Scholar 

  6. Beale E.L.M. and Tomlin J.A. (1970). Special facilities in a general mathematical programming system for nonconvex problems using ordered sets of variables. In: Lawrence, J. (eds) Proceedings of the Fifth International Conference on Operations Research, pp 447–454. Tavistock Publications, London

    Google Scholar 

  7. Biegler L.T. and Grossmann I.E. (2004). Retrospective on optimization. Comput. Chem. Eng. 28: 1169–1192

    Google Scholar 

  8. Björk K.M., Lindberg P.O. and Westerlund T. (2003). Some convexifications in global optimization of problems containing signomial terms. Comput. Chem. Eng. 27: 669–679

    Article  Google Scholar 

  9. Borchers B. and Mitchell J.E. (1994). An improved branch and bound algorithm for mixed integer nonlinear programs. Comput. Oper. Res. 21(4): 359–367

    Article  Google Scholar 

  10. Duran M. and Grossmann I.E. (1986). An outer-approximation algorithm for a class of mixed integer nonlinear programs. Math. Prog. 36: 307–339

    Article  Google Scholar 

  11. Fletcher R. and Leyffer S. (1994). Solving mixed integer nonlinear programs by outer approximation. Math. Prog. 66: 327–349

    Article  Google Scholar 

  12. Floudas C.A. (2000). Deterministic Global Optimization: Theory, Methods and Application. Kluwer Academic Publishers, Boston

    Google Scholar 

  13. Floudas C.A., Akrotirianakis I.G., Caratzoulas S., Meyer C.A. and Kallrath J. (2005). Global optimization in the 21st century: advances and challenges. Comput. Chem. Eng. 29: 1185–1202

    Article  Google Scholar 

  14. Floudas C.A. and Pardalos P.M. (1996). State of the Art in Global Optimization: Computational Methods and Applications. Kluwer Academic Publishers, Boston

    Google Scholar 

  15. Geoffrion A.M. (1972). Generalized benders decomposition. J. Opt. Theory Appl. 10: 237–260

    Article  Google Scholar 

  16. Glover F. and Laguna M. (1997). Tabu Search. Kluwer Academic Publishers, Boston

    Google Scholar 

  17. Grossmann I.E. (2002). Review of nonlinear mixed-integer and disjunctive programming techniques. Opt. Eng. 3: 227–252

    Article  Google Scholar 

  18. Grossmann I.E. and Biegler L.T. (2004). Part II. Future perspective on optimization. Comput. Chem. Eng. 28: 1193–1218

    Article  Google Scholar 

  19. Hussain M.F. and Al-Sultan K.S. (1997). A hybrid genetic algorithm for nonconvex function minimization. J. Global Opt. 11: 313–324

    Article  Google Scholar 

  20. Kokossis A.C. and Floudas C.A. (1994). Optimization of complex reactor networks-II: nonisothermal operation. Chem. Eng. Sci. 49(7): 1037–1051

    Article  Google Scholar 

  21. Lee S. and Grossmann I.E. (2000). New algorithms for nonlinear generalized disjunctive programming. Comput. Chem. Eng. 24: 2125–2142

    Article  Google Scholar 

  22. Leyffer S. (2001). Integrating sqp and branch-and-bound for mixed integer nonlinear programming. Computat. Opt. Appl. 18: 295–309

    Article  Google Scholar 

  23. Li H.L. and Tsai J.F. (2005). Treating free variables in generalized geometric global optimization programs. J. Global Opt. 33: 1–13

    Article  Google Scholar 

  24. LINGO Release 9.0. LINDO System Inc., Chicago (2004)

  25. Maranas C.D. and Floudas C.A. (1995). Finding all solutions of nonlinearly constrained systems of equations. J. Global Opt. 7(2): 143–182

    Article  Google Scholar 

  26. Maranas C.D. and Floudas C.A. (1997). Global optimization in generalized geometric programming. Comput. Chem. Eng. 21(4): 351–369

    Article  Google Scholar 

  27. Martin A., Möller M. and Moritz S. (2006). Mixed integer models for the stationary case of gas network optimization. Math. Prog. 105: 563–582

    Article  Google Scholar 

  28. McDonald C.M. and Floudas C.A. (1995). Global optimization for the phase and chemical equilibrium problem: application to the NRTL equation. Comput. Chem. Eng. 19(11): 1111–1141

    Article  Google Scholar 

  29. Papalexandri K.P., Pistikopoulos E.N. and Floudas C.A. (1994). Mass-exchange networks for waste minimization – a simultaneous approach. Chem. Eng. Res. Design 72(A3): 279–294

    Google Scholar 

  30. Pörn R., Harjunkoski I. and Westerlund T. (1999). Convexification of different classes of nonconvex MINLP problems. Comput. Chem. Eng. 23: 439–448

    Article  Google Scholar 

  31. Quesada I. and Grossmann I.E. (1992). An LP/NLP based branch and bound algorithm for convex MINLP optimization problems. Comput. Chem. Eng. 16: 937–947

    Article  Google Scholar 

  32. Salcedo R.L., Goncalves M.J. and Feyo de Azevedo S. (1990). An improved random-search algorithm for nonlinear optimization. Comput. Chem. Eng. 14: 1111–1126

    Article  Google Scholar 

  33. Stubbs R.A. and Mehrotra S. (1999). A branch-and-cut method for 0–1 mixed convex programming. Math. Prog. 86: 515–532

    Article  Google Scholar 

  34. Sun X.L., McKinnon K.I.M. and Li D. (2001). A convexification method for a class of global optimization problems with applications to reliability optimization. J. Global Opt. 21: 185–199

    Article  Google Scholar 

  35. Tomlin J.A. (1981). A suggested extension of special ordered sets to non-separable non-convex programming. Problems. In: Hansen, P. (eds) Studies on Graphs and Discrete Programming, pp 359–370. North-Holland Publishing Company, Amsterdam

    Chapter  Google Scholar 

  36. Tsai J.F., Li H.L. and Hu N.Z. (2002). Global optimization for signomial discrete programming problems in engineering design. Eng. Opt. 34: 613–622

    Article  Google Scholar 

  37. Westerlund T. and Pettersson F. (1995). An Extended cutting plane method for solving convex MINLP problems. Comput. Chem. Eng. 19: S131–S136 Suppl.

    Article  Google Scholar 

  38. Wu Z.Y., Bai F.S. and Zhang L.S. (2005). Convexification and concavification for a general class of global optimization problems. J. Global Opt. 31: 45–60

    Article  Google Scholar 

  39. Yiu K.F.C., Liu Y. and Teo K.L. (2004). A hybrid descent method for global optimization. J. Global Opt. 28: 229–238

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Hua Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, JF., Lin, MH. Global optimization of signomial mixed-integer nonlinear programming problems with free variables. J Glob Optim 42, 39–49 (2008). https://doi.org/10.1007/s10898-007-9211-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-007-9211-8

Keywords

Navigation