Skip to main content
Log in

Variable preference modeling with ideal-symmetric convex cones

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Based on the concept of general domination structures, this paper presents an approach to model variable preferences for multicriteria optimization and decision making problems. The preference assumptions for using a constant convex cone are given, and, in remedy of some immanent model limitations, a new set of assumptions is presented. The underlying preference model is derived as a variable domination structure that is defined by a collection of ideal-symmetric convex cones. Necessary and sufficient conditions for nondominance are established, and the problem of finding corresponding nondominated solutions is addressed and solved on examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Programming. 95(1, Ser. B), 3–51. ISMP 2000, Part 3 (Atlanta, GA) (2003)

  • Benson H.P. (1979). An improved definition of proper efficiency for vector maximization with respect to cones. J. Math. Anal. Appl. 71(1): 232–241

    Article  Google Scholar 

  • Benson H.P. (1983). Efficiency and proper efficiency in vector maximization with respect to cones. J. Math. Anal. Appl. 93(1): 273–289

    Article  Google Scholar 

  • Bergstresser K., Charnes A. and Yu P.-L. (1976). Generalization of domination structures and nondominated solutions in multicriteria decision making. J. Optim. Theory Appl. 18(1): 3–13

    Article  Google Scholar 

  • Bergstresser K. and Yu P.-L. (1977). Domination structures and multicriteria problems in N-person games. Theory Decis. 8(1): 5–48

    Article  Google Scholar 

  • Borwein J. (1977). Proper efficient points for maximizations with respect to cones. SIAM J. Control Optim. 15(1): 57–63

    Article  Google Scholar 

  • Chen G.Y. and Yang X.Q. (2002). Characterizations of variable domination structures via nonlinear scalarization. J. Optim. Theory Appl. 112(1): 97–110

    Article  Google Scholar 

  • Chen G.Y., Yang X.Q. and Yu H. (2005). A nonlinear scalarization function and generalized quasi-vector equilibrium problems. J. Global Optim. 32(4): 451–466

    Article  Google Scholar 

  • Chew, K.L.: Domination structures in abstract spaces. In: Proceedings of the First Franco-Southeast Asian Mathematical Conference (Singapore, 1979), vol. II, Special Issue b, pp. 190–204 (1979)

  • Coladas Uría L. (1981). Nondominated solutions in multiobjective problems. Trabajos Estadíst. Investigación Oper. 32(1): 3–12

    Google Scholar 

  • Corley H.W. (1980). A new scalar equivalence for Pareto optimization. IEEE Trans. Automat. Control 25(4): 829–830

    Article  Google Scholar 

  • Corley H.W. (1981). Duality theory for maximizations with respect to cones. J. Math. Anal. Appl 84(2): 560–568

    Article  Google Scholar 

  • Corley H.W. (1985). On optimality conditions for maximizations with respect to cones. J. Optim. Theory Appl. 46(1): 67–78

    Article  Google Scholar 

  • Edgeworth F.Y. (1881). Mathematical Psychics: An Essay on the Application of Mathematics to the Moral Sciences. P. Keagan, London

    Google Scholar 

  • Ehrgott M. and Tenfelde-Podehl D. (2003). Computation of ideal and Nadir values and implications for their use in MCDM methods. European J. Oper. Res. 151(1): 119–139

    Article  Google Scholar 

  • Ehrgott, M., Wiecek, M.M.: Multiobjective programming. In: Figueira, J., Greco, S., Ehrgott, M. (eds) Multiple Criteria Decision Analysis: State of the Art Surveys, vol. 78, pp. 667–722. International Series in Operations Research & Management Science. Springer, New York (2005)

  • (2000). Preferences and Decisions under Incomplete Knowledge, volume 51 of Studies in Fuzziness and Soft Computing. Physica-Verlag, Heidelberg

    Google Scholar 

  • Fujita T. (1996). Characterization of the solutions of multiobjective linear programming with a general dominated cone. Bull. Inform. Cybernet. 28(1): 23–29

    Google Scholar 

  • Gass S. and Saaty T. (1955). The computational algorithm for the parametric objective function. Naval Res. Logist. Quart. 2: 39–45

    Article  Google Scholar 

  • Geoffrion A.M. (1968). Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22: 618–630

    Article  Google Scholar 

  • Guddat J., Guerra Vasquez F., Tammer K. and Wendler K. (1985). Multiobjective and Stochastic Optimization Based on Parametric Optimization. Mathematical Research, 26. Akademie-Verlag, Berlin

    Google Scholar 

  • Henig M.I. (1982). Proper efficiency with respect to cones. J. Optim. Theory Appl. 36(3): 387–407

    Article  Google Scholar 

  • Henig M.I. (1990). Value functions, domination cones and proper efficiency in multicriteria optimization. Math. Programming, 46(2, (Ser. A)): 205–217

    Article  Google Scholar 

  • Hsia W.-S. and Lee T.Y. (1988). Lagrangian function and duality theory in multiobjective programming with set functions. J. Optim. Theory Appl. 57(2): 239–251

    Article  Google Scholar 

  • Hunt, B.J.: Multiobjective Programming with Convex Cones: Methodology and Applications. PhD thesis, Clemson University, Clemson, South Carolina, USA. Margaret M. Wiecek, advisor. (2004)

  • Hunt B.J. and Wiecek M.M. (2003). Cones to aid decision making in multicriteria programming. In: Tanino, T., Tanaka, T. and Inuiguchi, M. (eds) Multi-Objective Programming and Goal Programming, pp 153–158. Springer-Verlag, Berlin

    Google Scholar 

  • Hyers D.H., Isac G. and Rassias T.M. (1997). Topics in Nonlinear Analysis & Applications. World Scientific Publishing Co. Inc., River Edge

    Google Scholar 

  • Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability,1950, pp. 481–492, University of California Press, Berkeley and Los Angeles (1951)

  • Lin S.A.Y. (1976). A comparison of Pareto optimality and domination structure. Metroeconomica 28(1–3): 62–74

    Article  Google Scholar 

  • Naccache P.H. (1978). Connectedness of the set of nondominated outcomes in multicriteria optimization. J. Optim. Theory Appl. 25(3): 459–467

    Article  Google Scholar 

  • Noghin V.D. (1997). Relative importance of criteria: a quantitative approach. J. Multi-Criteria Decision Analysis 6: 355–363

    Article  Google Scholar 

  • Öztürk, M., Tsoukiàs, A., Vincke, P.: Preference modelling. In Multiple criteria decision analysis. State of the art surveys, volume 78 of International Series in Operations Research & Management Science, pp. 29–71. Springer, Berlin (2005)

  • Pareto V. (1896). Cours d’Économie Politique. Rouge, Lausanne

    Google Scholar 

  • Ramesh R., Karwan M.H. and Zionts S. (1988). Theory of convex cones in multicriteria decision making. Ann. Oper. Res. 16(1–4): 131–147

    Article  Google Scholar 

  • Ramesh R., Karwan M.H. and Zionts S. (1989). Preference structure representation using convex cones in multicriteria integer programming. Management Sci. 35(9): 1092–1105

    Article  Google Scholar 

  • Rockafellar R.T. (1970). Convex analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton

    Google Scholar 

  • Sawaragi Y., Nakayama H. and Tanino T. (1985). Theory of Multiobjective Optimization, volume 176 of Mathematics in Science and Engineering. Academic Press Inc., Orlando

    Google Scholar 

  • (1998). Fuzzy Sets in Decision Analysis, Operations Research and Statistics, volume 1 of The Handbooks of Fuzzy Sets Series. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Takeda E. and Nishida T. (1980). Multiple criteria decision problems with fuzzy domination structures. Fuzzy Sets Systems 3(2): 123–136

    Article  Google Scholar 

  • Tamura K. and Miura S. (1979). Necessary and sufficient conditions for local and global nondominated solutions in decision problems with multi-objectives. J. Optim. Theory Appl. 28(4): 501–523

    Article  Google Scholar 

  • Tanino T., Nakayama H. and Sawaragi Y. (1980). Domination structures and their parametrization in group decision making. Syst. Control 24(12): 807–815

    Google Scholar 

  • Tanino T. and Sawaragi Y. (1978). Stability of the solution set in problems of finding cone extreme points. Syst. Control 22(11): 693–700

    Google Scholar 

  • Tanino T. and Sawaragi Y. (1979). Duality theory in multiobjective programming. J. Optim. Theory Appl. 27(4): 509–529

    Article  Google Scholar 

  • Tanino T. and Sawaragi Y. (1980). Stability of nondominated solutions in multicriteria decision-making. J. Optim. Theory Appl. 30(2): 229–253

    Article  Google Scholar 

  • Weidner, P.: Domination sets and optimality conditions in vector optimization theory. Wissenschaftliche Zeitschrift der Technischen Hochschule Ilmenau 31(2), 133–146. (in German) (1985)

    Google Scholar 

  • Weidner, P.: Tradeoff directions and dominance sets. In: Multi-objective programming and goal programming, Adv. Soft Comput., pp. 275–280. Springer, Berlin (2003)

  • Wendell R.E. and Lee D.N. (1977). Efficiency in multiple objective optimization problems. Math. Programming 12(3): 406–414

    Article  Google Scholar 

  • Wu H.C. (2004). A solution concept for fuzzy multiobjective programming problems based on convex cones. J. Optim. Theory Appl. 121(2): 397–417

    Article  Google Scholar 

  • Yamamoto Y. (2002). Optimization over the efficient set: overview. J. Global Optim. 22(1–4): 285–317

    Article  Google Scholar 

  • Yu P.-L. (1973). Introduction to domination structures in multicriteria decision problems. In: Cochrane, J.L. and Zeleny, M. (eds) Multiple Criteria Decision Making, pp 249–261. University of South Carolina Press, Columbia

    Google Scholar 

  • Yu P.-L. (1974). Cone convexity, cone extreme points and nondominated solutions in decision problems with multiobjectives. J. Optim. Theory Appl. 14: 319–377

    Article  Google Scholar 

  • Yu, P.-L.: Domination structures and nondominated solutions. In: Multicriteria Decision Making, pp. 227–280. Internat. Centre for Mech Sci (CISM) Courses and Lectures, No. 211. Springer, Vienna (1975)

  • Yu P.-L. (1985). Multiple-criteria Decision Making. Concepts, Techniques and Extensions Mathematical Concepts and Methods in Science and Engineering, 30. Plenum Press, New York-London

    Google Scholar 

  • Yu P.-L. and Leitmann G. (1974). Compromise solutions, domination structures and Salukvadze’s solution. J. Optim. Theory Appl. 13: 362–378

    Article  Google Scholar 

  • Yun Y.B., Nakayama H. and Tanino T. (2004). A generalized model for data envelopment analysis. European J. Oper. Res. 157(1): 87–105

    Article  Google Scholar 

  • Zadeh, L.: Optimality and nonscalar-valued performance criteria. IEEE Trans Auto. Cont., AC-8:1 (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Engau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engau, A. Variable preference modeling with ideal-symmetric convex cones. J Glob Optim 42, 295–311 (2008). https://doi.org/10.1007/s10898-007-9246-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-007-9246-x

Keywords

Navigation