Skip to main content
Log in

Solving polynomial least squares problems via semidefinite programming relaxations

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A polynomial optimization problem whose objective function is represented as a sum of positive and even powers of polynomials, called a polynomial least squares problem, is considered. Methods to transform a polynomial least square problem to polynomial semidefinite programs to reduce degrees of the polynomials are discussed. Computational efficiency of solving the original polynomial least squares problem and the transformed polynomial semidefinite programs is compared. Numerical results on selected polynomial least square problems show better computational performance of a transformed polynomial semidefinite program, especially when degrees of the polynomials are larger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blair J.R.S., Peyton B.: An introduction to chordal graphs and clique trees. In: George A., Gilbert J.R., Liu J.W.H. (eds) Graph Theory and Sparse Matrix Computation. Springer-Verlag, New York 1–29 (1993)

    Google Scholar 

  2. Borchers B.: SDPLIB 1.2, a library of semidefinite programming test problems. Optim. Methods Softw. 11&12, 683–690 (1999)

    Article  Google Scholar 

  3. Coleman T.F., Li Y.: On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds. Math. Progr. 67(2), 189–224 (1994)

    Article  Google Scholar 

  4. Coleman T.F., Li Y.: An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6, 418–445 (1996)

    Article  Google Scholar 

  5. Conn A.R., Gould N.I.M., Toint P.L.: Testing a class of methods for solving minimization problems with simple bounds on the variables. Math. Comp. 50, 399–430 (1988)

    Article  Google Scholar 

  6. Fujisawa, K., Kojima, M., Nakata, K.: SDPA (SemiDefinite Programming Algorithm) user’s manual, Version 5.0, Research Report B-308, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Oh-Okayama, Meguro, Tokyo 152-8552, Japan (1995)

  7. Gould N.I.M., Orban D., Toint Ph.L.: Cuter, a constrained and unconstrained testing environment, revisited. TOMS 29, 373–394 (2003)

    Article  Google Scholar 

  8. Henrion, D., Lasserre, J.B.: GloptiPoly: global optimization over polynomials with Matlab and SeDuMi. Laboratoire d’Analyse et d’Architecture des Syst‘emes, Centre National de la Recherche Scientifique, 7 Avenue du Colonel Roche, 31 077 Toulouse, cedex 4, France, February (2002)

  9. Henrion D., Lasserre J.B.: Convergent relaxations of polynomial matrix inequalities and static output feedback. IEEE Trans. Autom. Control 51(2), 192–202 (2006)

    Article  Google Scholar 

  10. Hol, C.W., Scherer, C.W.: Sums of squares relaxations for polynomial semi-definite programming. In: De Moor, B., Motmans, B. (eds.) Proceedings of the 16th International Symposium on Mathematical Theory of Networks and Systems. Leuven, Belgium, 5–9 July (2004) 1–10

  11. Jibetean D., Laurent M.: Semidefinite approximation for global unconstrained polynomial optimization. SIAM J. Optim. 16(2), 490–514 (2005)

    Article  Google Scholar 

  12. Kim S., Kojima M., Waki H.: Generalized Lagrangian duals and sums of squares relaxations of sparse polynomial optimization problems. SIAM J. Optim. 15, 697–719 (2005)

    Article  Google Scholar 

  13. Kim, S., Kojima, M., Toint, Ph.L.: Recognizing underlying sparsity in Optimization. Math. Program., Ser. A. (2009). doi:10.1007/s10107-008-0210-4

  14. Kobayashi K., Kim S., Kojima M.: Correlative sparsity in primal-dual interior point methods for LP, SOCP and SDP. Appl. Math. Optim. 58(1), 69–88 (2008)

    Article  Google Scholar 

  15. Kobayashi K., Kim S., Kojima M.: Sparse second order cone programming approaches for convex opimitization problems. J. Oper. Res. Soc. Japan 51(3), 241–264 (2008)

    Google Scholar 

  16. Kojima, M.: Sums of squares relaxations of polynomial semidefinite programs. Research Report B-397, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Oh-Okayama, Meguro, Tokyo 152-8552, Japan (2003)

  17. Kojima M., Muramatsu M.: An extension of sums of squares relaxations to polynomial optimization problems over symmetric cones. Math. Program. 110, 315–326 (2007)

    Article  Google Scholar 

  18. Kojima M., Muramatsu M.: A note on sparse SOS and SDP relaxations for polynomial optimization problems over symmetric cones. Comput. Optim. Appl. 42(1), 31–41 (2009)

    Article  Google Scholar 

  19. Kojima M., Kim S., Waki H.: Sparsity in sums of squares of polynomials. Math. Program. 103, 45–62 (2005)

    Article  Google Scholar 

  20. Kowalik J.S., Osborne M.R.: Methods for unconstrained optimization problems. Elseview North- Halland, New York (1968)

    Google Scholar 

  21. Lasserre J.B.: Global optimization with polynomials and the problems of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  Google Scholar 

  22. Lasserre J.B.: Convergent SDP-relaxations in polynomial optimization with sparsity. SIAM J. Optim. 17(3), 822–843 (2006)

    Article  Google Scholar 

  23. Li T.Y.: Solving polynomial systems by polyhedral homotopies. Taiwan J. Math. 3, 251–279 (1999)

    Google Scholar 

  24. Li, T.Y.: HOM4PS in Fortran. http://www.mth.msu.edu/~li/

  25. More J.J., Garbow B.S., Hillstrom K.E.: Testing unconstrained optimization software. ACM Trans. Math. Soft. 7, 17–41 (1981)

    Article  Google Scholar 

  26. Nash S.G.: Newton-type minimization via the Lanczos method. SIAM J.Numer. Anal. 21, 770–788 (1984)

    Article  Google Scholar 

  27. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer (2006)

  28. Prajna, S., Papachristodoulou, A., Parrilo, P.A.: SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB—User’s Guide. Control and Dynamical Systems, California Institute of Technology, Pasadena, CA 91125 USA, (2002)

  29. Sturm F.J.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11(12), 625–653 (1999)

    Article  Google Scholar 

  30. Test suite of polynomial systems. http://www.math.uic.edu/~jan

  31. Toh K., Todd M.J., Tütüntü R.H.: SDPT3—a MATLAB software package for semidefinite programming. Department of Mathematics, National University of Singapore, Singapore (1998)

    Google Scholar 

  32. Waki H., Kim S., Kojima M., Muramatsu M.: Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17(1), 218–242 (2006)

    Article  Google Scholar 

  33. Waki H., Kim S., Kojima M., Muramatsu M.: SparsePOP : a sparse semidefinite programming relaxation of polynomial optimization problems. ACM Trans. Math. Softw. 15, 2–15 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunyoung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Kojima, M. Solving polynomial least squares problems via semidefinite programming relaxations. J Glob Optim 46, 1–23 (2010). https://doi.org/10.1007/s10898-009-9405-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-009-9405-3

Keywords

Navigation