Skip to main content
Log in

Global optimization numerical strategies for rate-independent processes

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper presents an approach to numerical solution of problems posed in the framework of quasi-static rate-independent processes. As soon as a problem allows for an energetic formulation there are known methods of its time discretization by time incremental minimization problems, which demand for global optimization of a non-convex functional. Moreover the two-sided energy inequality, a necessary condition for optimization, can be formulated. Here we present an algorithm for finding solutions of rate-independent processes that verifies this condition and uses the strategy of backtracking if it is violated. We present the selectivity of the mentioned necessary condition in general and give numerical examples of the efficiency of such an algorithm, but also of situations that are beyond its limits. For those we propose a second strategy relying on wisely chosen combinations of spatial discretizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Francfort G., Mielke A.: Existence results for a class of rate-independent material models with nonconvex elastic energies. J. Reine Angew. Math. 595, 55–91 (2006)

    Article  Google Scholar 

  2. Mainik A., Mielke A.: Existence results for energetic models for rate-independent systems. Calc. Var. Partial Dif. 22, 73–99 (2005)

    Google Scholar 

  3. Mielke A.: Evolution in rate-independent systems. In: Dafermos, C., Feireisl, E. (eds) Handbook of Differential Equations: Evolutionary Equations 2., pp. 461–559. Elsevier B.V., Amsterdam (2005)

    Google Scholar 

  4. Mielke A., Theil F.: On rate-independent hysteresis models. Nonl. diff. Eqns. Appl. 11, 151–189 (2004)

    Google Scholar 

  5. Kružík M., Mielke A., Roubíček T.: Modelling of microstructure and its evolution in shape-memory-alloy single-crystals, in particular in CuAlNi. Meccanica 40, 389–418 (2005)

    Article  Google Scholar 

  6. Mielke A., Roubíček T., Zeman J.: Complete damage in elastic and viscoelastic media and its energetics. Comput. Method. Appl. Mech. Eng. 99, 1242–1253 (2010)

    Article  Google Scholar 

  7. Arndt M., Griebel M., Novák V., Roubíček T., Šittner P.: Martensitic transformation in NiMnGa single crystals: numerical simulations and experiments. Int. J. Plast. 22, 1943–1961 (2006)

    Article  Google Scholar 

  8. Golomb S.W., Baumert L.D.: Backtrack programming. J. ACM 12(4), 516–524 (1965)

    Article  Google Scholar 

  9. Bourdin B., Francfort G., Marigo J.-J.: The variational approach to fracture. J. Elast. 91, 5–148 (2008)

    Article  Google Scholar 

  10. Bourdin B.: Numerical implementation of the variational formulation of quasi-static brittle fracture. Interface Free. Bound. 9, 411–430 (2007)

    Article  Google Scholar 

  11. Brandt A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31, 90–333 (1977)

    Google Scholar 

  12. Hager, W.W., Huang, S.J., Pardalos, P.M., Prokopyev, O.A. (eds): Multiscale optimization methods and applications (Nonconvex optimization and its applications). Kluwer, Dordrecht (2006)

    Google Scholar 

  13. Halphen B., Nguyen Q.S.: Sur les matériaux standards généralisés. J. Mécanique 14, 39–63 (1975)

    Google Scholar 

  14. Branke, J.: Evolutionary approaches to dynamic environments—udated survey. GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Problems, 27–30 (2001)

  15. Branke J.: Evolutionary Optimization in Dynamic Environments (Genetic Algorithms and Evolutionary Computation). Kluwer, Dordrecht (2002)

    Google Scholar 

  16. Grefenstette, J.J.: Genetic algorithms for changing environments. In: Maenner, R., Manderick, B. (eds.) Parallel Problem Solving from Nature, vol. 2, pp. 137–144. North Holland (1992)

  17. Blackwell T.: Particle swarm optimization in dynamic environments. Stud. Comput. Intell. (SCI) 51, 29–49 (2007)

    Article  Google Scholar 

  18. Cobb, H.G., Grefenstette, J.J.: Genetic algorithms for tracking changing environments. International Conference on Genetic Algorithms, pp. 523–530. Morgan Kaufmann (1993)

  19. Branke, J.: The moving peaks benchmark website. http://www.aifb.unikarlsruhe.de/jbr/movpeaks

  20. Trojanowski, K., Michalewicz, Z.: Evolutionary algorithms for non-stationary environments. In: Proceedings of 8th Workshop: Intelligent Information Systems, pp. 229–240. ICS PAS Press (1999)

  21. Aubry S., Fago M., Ortiz M.: A constrained sequential-lamination algorithm for the simulation of sub-grid microstructure in martensitic materials. Comput. Method. Appl. Mech. Eng. 192, 823–2843 (2003)

    Google Scholar 

  22. Horst, R., Pardalos, P.M. (eds): Handbook of Global Optimization. Kluwer, Dordrecht (1995)

    Google Scholar 

  23. Horst R., Pardalos P.M., Van Thoai N.: Introduction to Global Optimization, 2nd edn. (Nonconvex Optimization and Its Applications). Kluwer, Dordrecht (2001)

    Google Scholar 

  24. Walker P.L.: An emmerative technique for a class of combinatorial problems. Amer. Math. Soc. Proc. Syrup. Appl. Math. 10, 91–94 (1960)

    Google Scholar 

  25. Brandt A., Ron D.: Multigrid solvers and multilevel optimization strategies. In: Cong, J., Shinnerl, J.R. Multilevel Optimization and VLSICAD, Kluwer, Boston, MA (2003)

  26. Schoonderwoerd R., Holland O., Bruten J., Rothkrantz L.: Ant-based load balancing in telecommunications networks. Adapt. Behav. 5, 169–207 (1996)

    Article  Google Scholar 

  27. Di Caro G., Dorigo M.: AntNet: distributed stigmergetic control for communications networks. J. Artif. Intel. Res. 9, 317–365 (1998)

    Google Scholar 

  28. Louis, S.J., Xu, Z.: Genetic algorithms for open shop scheduling and re-scheduling. In: Cohen, M.E., Hudson, D.L. (eds.) ISCA Eleventh International Conference on Computers and their Applications, pp. 99–102 (1996)

  29. Hu, X., Eberhart, R.C.: Adaptive particle swarm optimisation: detection and response to dynamic systems. In: Proceedings of Congress on Evolutionary Computation, pp. 1666–1670 (2002)

  30. Ball J.M., James R.D.: Proposed experimental tests of a theory of fine microstructure, and the two-well problem. Phil. Trans. Roy. Soc. London A 338, 389–450 (1992)

    Article  Google Scholar 

  31. Kružík M.: Numerical approach to double well problems. SIAM J. Numer. Ana. 35, 1833–1849 (1998)

    Article  Google Scholar 

  32. Müller S.: Variational models for microstructure and phase transitions. In: Hildebrandt, S., Struwe, M. (eds) Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996), pp. 85–210. Springer, Berlin (1999)

    Chapter  Google Scholar 

  33. Ball J.M., James R.D.: Fine phase mixtures as minimizers of energy. Arch. Rat. Mech. Anal. 100, 13–52 (1987)

    Article  Google Scholar 

  34. Rajagopal K.R., Roubíček T.: On the effect of dissipation in shape-memory alloy. Nonlinear Anal. Real World Appl. 4, 581–597 (2003)

    Article  Google Scholar 

  35. Roubíček T.: Dissipative evolution of microstructure in shape memory alloys. In: Bungartz, H.-J., Hoppe, R.H.W., Zenger, C. (eds) Lectures on Applied Mathematics, pp. 45–63. Springer, Berlin (2000)

    Google Scholar 

  36. Byrd R.H., Lu P., Nocedal J.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Stat. Comp. 16, 1190–1208 (1995)

    Article  Google Scholar 

  37. Zhu C., Byrd R.H., Nocedal J.: L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization. ACM T. Math. Softw. 23, 550–560 (1997)

    Article  Google Scholar 

  38. Kirkpatrick S., Gelatt C.D., Vecchi M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  Google Scholar 

  39. Černý V.: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optimiz. Theor. Appl. 45, 41–51 (1985)

    Article  Google Scholar 

  40. Standard PSO (2006) http://www.particleswarm.info/Standard_PSO_2006.c

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbora Benešová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benešová, B. Global optimization numerical strategies for rate-independent processes. J Glob Optim 50, 197–220 (2011). https://doi.org/10.1007/s10898-010-9560-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-010-9560-6

Keywords

Navigation