Skip to main content
Log in

The extrapolated interval global optimization algorithm

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper presents a new approach based on extrapolation to accelerate the linear convergence process of Vectorized Moore–Skelboe (VMS) algorithm. The VMS is a modified version of basic Moore–Skelboe (MS) algorithm, where the vectorization is used as a means to speed up the basic MS algorithm. We propose to further accelerate the converging process of VMS from linear to quadratic by combining the Richardson extrapolation technique with VMS. The effectiveness of the proposed algorithm is tested on various multivariate examples and compared with the unaccelerated conventional method, i.e., MS and well-known optimization software GlobSol. The test results show that the proposed extrapolation-based VMS offer considerable speed improvements over both the existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brezinski C.: Error control in convergence acceleration processes. IMA J. Numer. Anal. 3, 65–80 (1983)

    Article  Google Scholar 

  2. Brezinski C., Zaglia M.R.: Extrapolation Methods: Theory and Practice. North-Holland, Amsterdam (2002)

    Google Scholar 

  3. Floudas, C.A., Pardalos, P.M. (eds): Encyclopedia of Optimization, 2nd edn. Springer, Berlin (2009)

    Google Scholar 

  4. Hansen E.: Global Optimization using Interval Analysis. Marcel Dekker, New York (1992)

    Google Scholar 

  5. Himmelblau D.M., Yates R.V.: Applied Non-Linear Programming. McGraw-Hill, New York (1972)

    Google Scholar 

  6. Hock W., Schittkowski K.: Test Examples for Nonlinear Programming Codes. Springer, Berlin (1981)

    Google Scholar 

  7. Ichida K., Fuiji Y.: An interval arithmetic method for global optimization. Computing 23, 85–97 (1979)

    Article  Google Scholar 

  8. Kearfott R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht (1996)

    Google Scholar 

  9. Kearfott R.B.: Interval analysis: unconstrained and constrained optimization. In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization, pp. 1727–1730. Springer, Berlin (2009)

    Chapter  Google Scholar 

  10. Leclerc A.P.: Interval analysis: parallel methods for global optimization. In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization, pp. 1709–1717. Springer, Berlin (2009)

    Chapter  Google Scholar 

  11. Moore R.E.: Interval Analysis. 2nd edn. Prentice-Hall, Englewood Cliffs (1966)

    Google Scholar 

  12. Moore R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)

    Google Scholar 

  13. Moore R.E., Ratschek H.: Inclusion functions and global optimization II. Math. Programming 41, 341–356 (1988)

    Article  Google Scholar 

  14. More J.J., Garbow B.S., Hillstrom K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7(1), 17–41 (1981)

    Article  Google Scholar 

  15. Nataraj P.S.V., Sondur S.: Experiments with range computations using extrapolation. Reliable Comput. 13, 1–23 (2007)

    Google Scholar 

  16. Prakash, A.K.: Vectorized Interval Analysis Algorithms and their Applications. PhD thesis, Systems and Control Engineering, IIT Bombay (2002)

  17. Ratschek H.: Inclusion functions and global optimizations. Math. Programming 33, 300–317 (1985)

    Article  Google Scholar 

  18. Ratschek H., Rokne J.: Computer Methods for the Range of Functions. Ellis Horwood, Chichester (1984)

    Google Scholar 

  19. Ratschek H., Rokne J.: New Computer Methods for Global Optimization. Wiley, New York (1988)

    Google Scholar 

  20. Ratschek H., Rokne J.G.: Interval global optimization. In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization, pp. 1739–1757. Springer, Berlin (2009)

    Chapter  Google Scholar 

  21. Ratz D., Csendes T.: On the selection of subdivision directions in interval branch-and-bound methods for global optimization. J. Global Optim. 7, 183–207 (1995)

    Article  Google Scholar 

  22. Sidi A.: Practical Extrapolation Methods. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  23. Stoer J., Bulirsch R.: Introduction to Numerical Analysis, 2nd edn. Springer, Berlin (1991)

    Google Scholar 

  24. Walz G.: Asymptotics and Extrapolation. Akademie, Berlin (1996)

    Google Scholar 

  25. Zilinskas J., Bogle I.D.L.: Global optimization: interval analysis and balanced interval arithmetic. In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization, 2nd edn, pp. 1346–1350. Springer, Berlin (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanta Sondur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nataraj, P.S.V., Sondur, S. The extrapolated interval global optimization algorithm. J Glob Optim 50, 249–270 (2011). https://doi.org/10.1007/s10898-010-9578-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-010-9578-9

Keywords

Navigation