Skip to main content
Log in

A continuation approach for the capacitated multi-facility weber problem based on nonlinear SOCP reformulation

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We propose a primal-dual continuation approach for the capacitated multi-facility Weber problem (CMFWP) based on its nonlinear second-order cone program (SOCP) reformulation. The main idea of the approach is to reformulate the CMFWP as a nonlinear SOCP with a nonconvex objective function, and then introduce a logarithmic barrier term and a quadratic proximal term into the objective to construct a sequence of convexified subproblems. By this, this class of nondifferentiable and nonconvex optimization problems is converted into the solution of a sequence of nonlinear convex SOCPs. In this paper, we employ the semismooth Newton method proposed in Kanzow et al. (SIAM Journal of Optimization 20:297–320, 2009) to solve the KKT system of the resulting convex SOCPs. Preliminary numerical results are reported for eighteen test instances, which indicate that the continuation approach is promising to find a satisfying suboptimal solution, even a global optimal solution for some test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aras N., Altinel I.K., Orbay M.: New heuristic methods for the capacitated multi-facility Weber problem. Nav. Res. Logist. 54, 21–32 (2007)

    Article  Google Scholar 

  2. Alizadeh F., Goldfarb D.: Second-order cone programming. Math. Program. 95, 3–51 (2003)

    Article  Google Scholar 

  3. Al-Loughani, L.: Algorithmic approaches for solving the Euclidean distance location-allocation problem. Ph.D. Dissertation, Industrial and System Engineering, Virginia Polytechnic Institute and State University, Blacksburgh, Virginia (1997)

  4. Bertsekas D.P.: Convexification procedures and decomposition methods for nonconvex optimization problems. J. Optim. Theor. Appl. 29, 169–197 (1979)

    Article  Google Scholar 

  5. Ben-Tal A., Nemirovski A.: Lectures on Modern Convex Optimization, MPS-SIAM Series on Optimization. SIAM, Philadelphia PA (2001)

    Book  Google Scholar 

  6. Boyd S., Vandenberghe L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  7. Cooper L.: The transportation-location problem. Operations Research 20, 94–108 (1972)

    Article  Google Scholar 

  8. Chen X.-D., Sun D., Sun J.: Complementarity functions and numerical experiments for second-order cone complementarity problems. Comput. Optim. Appl. 25, 39–56 (2003)

    Article  Google Scholar 

  9. Chen J.-S., Tseng P.: An unconstrained smooth minimization reformulation of the second-order cone complementarity problem. Math. Program. 104, 293–327 (2005)

    Article  Google Scholar 

  10. Drezner Z., Hamacher H.: Facility Location: Applications and Theory. Springer, Berlin (2002)

    Google Scholar 

  11. Fischer A.: Solution of the monotone complementarity problem with locally Lipschitzian functions. Math. Program. 76, 513–532 (1997)

    Google Scholar 

  12. Fukushima M., Luo Z.-Q., Tseng P.: Smoothing functions for second-order cone complementarity problems. SIAM J. Optim. 12, 436–460 (2002)

    Article  Google Scholar 

  13. Francis R.L., McGinnis L.F., White J.A.: Facility Layout and Location: An Analytical Approach. Prentice Hall, Englewood Cliffs, NJ (1991)

    Google Scholar 

  14. Horn R.A., Johnson C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  15. Hajiaghayi M., Mahdian M., Mirrokni V.S.: The facility location problem with general cost functions. Networks 42, 42–47 (2003)

    Article  Google Scholar 

  16. Hayashi S., Yamashita N., Fukushima M.: A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J. Optim. 15, 593–615 (2005)

    Article  Google Scholar 

  17. Kanzow C., Ferenczi I., Fukushima M.: On the local convergence of semismooth Newton methods for linear and nonlinear second-order cone programs without strict complementarity. SIAM J. Optim. 20, 297–320 (2009)

    Article  Google Scholar 

  18. Lobo, M.S., Vandenberghe, L., Boyd, S.: SOCP-Software for second-order cone programming: User’s guide. Technical Report, Department of Electrical Engineering, Standford University, April (1997)

  19. Lobo M.S., Vandenberghe L., Boyd S., Lebret H.: Application of second-order cone programming. Linear Algebra Appl. 284, 193–228 (1998)

    Article  Google Scholar 

  20. Mahdian M., Ye Y., Zhang J.: Approximation algorithms for metric facility location problems. SIAM J. Comput. 36, 411–432 (2006)

    Article  Google Scholar 

  21. Maranas C.D.: Global optimization in Weber’s problem with attraction and repulsion Part 7. In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization, pp. 1423–1427. Springer, Berlin (2009)

    Chapter  Google Scholar 

  22. Overton M.L.: A quadratically convergent method for minimizing a sum of Euclidean norms. Math. Program. 27, 34–63 (1983)

    Article  Google Scholar 

  23. Pardalos P.M., Du D.: Network Design: Connectivity and Facilities Location, DIMACS Series, vol. 40. American Mathematical Society, Providence (1998)

    Google Scholar 

  24. Qi L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227–244 (1993)

    Article  Google Scholar 

  25. Qi L., Sun J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)

    Article  Google Scholar 

  26. Qi L., Zhou G.: A smoothing Newton method for minimizing a sum of Euclidean norms. SIAM J. Optim. 11, 389–410 (2000)

    Article  Google Scholar 

  27. Sherali H.D., Adams W.P.: A reformulation-linearization technique for solving discrete and continuous nonconvex problems. Kluwer Academic, The Netherlands (1999)

    Google Scholar 

  28. Sherali H.D., Al-Loughani I., Subramanian S.: Global optimization procedure for the capacitated Euclidean and l p distance multifacility location-allocation problems. Oper. Res. 50, 433–448 (2002)

    Article  Google Scholar 

  29. Selim, S.: Biconvex programming and deterministic and stochastic location allocation problems. Ph. D. disseration, School of Industrial and System Engineering, Georgia Institute of Technology, Atlanta, Georgia (1979)

  30. Sherali H.D., Nordai F.L.: NP-hard, capacitated, balanced p-median problems on a chain graph with a continuum of link demands. Math. Oper. Res. 13, 32–49 (1988)

    Article  Google Scholar 

  31. Sturm J.F.: Using SeDumi 1.02, a MATLAB tool box for optimization over symmetric cones. Optim. Methods Softw. 11, 625–653 (1999)

    Article  Google Scholar 

  32. Wesolowsky G.: The Weber problem: history and perspectives. Location Sci. 1, 5–23 (1993)

    Google Scholar 

  33. Xue G.L., Ye Y.: An efficient algorithm for minimizing a sum of Euclidean norms with applications. SIAM J. Optim. 7, 1017–1036 (1997)

    Article  Google Scholar 

  34. Xue G.L., Rosen J.B., Pardalos P.M.: A polynomial time dual algorithm for the Euclidean multifacility location problemn. Oper. Res. Lett. 18, 201–204 (1996)

    Article  Google Scholar 

  35. Levin Y., Ben-Israel A.: A heuristic method for large-scale multi-facility local problems. Comput. Oper. Res. 31, 257–272 (2004)

    Article  Google Scholar 

  36. Zhang J., Chen B., Ye Y.: A multiexchange local search algorithm for the capacitated facility location problem. Math. Oper. Res. 30, 389–403 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jein-Shan Chen.

Additional information

J.-S. Chen—Member of Mathematics Division, National Center for Theoretical Sciences, Taipei Office.

The author’s work is partially supported by National Science Council of Taiwan.

S. Pan—The author’s work is supported by the Fundamental Research Funds for the Central Universities (SCUT), Guangdong Natural Science Foundation (No. 9251802902000001) and National Young Natural Science Foundation (No. 10901058).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, JS., Pan, S. & Ko, CH. A continuation approach for the capacitated multi-facility weber problem based on nonlinear SOCP reformulation. J Glob Optim 50, 713–728 (2011). https://doi.org/10.1007/s10898-010-9632-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-010-9632-7

Keywords

Navigation