Skip to main content
Log in

Strong convergence theorems for variational inequality problems and quasi-\({\phi}\)-asymptotically nonexpansive mappings

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we introduce an iterative process which converges strongly to a common solution of finite family of variational inequality problems for γ-inverse strongly monotone mappings and fixed point of two continuous quasi-\({\phi}\)-asymptotically nonexpansive mappings in Banach spaces. Our theorems extend and unify most of the results that have been proved for the class of monotone mappings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alber Ya.: Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartsatos, A.G. (eds) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Lecture Notes in Pure and Appl. Math., vol. 178, pp. 15–50. Dekker, New York (1996)

    Google Scholar 

  2. Kamimura S., Takahashi W.: Strong convergence of proximal-type algorithm in a Banach space. SIAM J. Optim. 13, 938–945 (2002)

    Article  Google Scholar 

  3. Reich S.: A weak convergence theorem for the alternating method with Bergman distance. In: Kartsatos, A.G. (eds) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Leture Notes in Pure and Appl. Math., Vol. 178, pp. 313–318. Dekker, New York (1996)

    Google Scholar 

  4. Cioranescu I.: Geometry of Banach Spaces, Duality Mapping and Nonlinear Problems. Kluwer Academic publishers, Amsterdam (1990)

    Book  Google Scholar 

  5. Takahashi W.: Nonlinear Functional Analysis (Japanese). Kindikagaku, Tokyo (1988)

    Google Scholar 

  6. Qin X., Cho Y.J., Kang S.M.: Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spces. J. Comput. Appl. Math. 230, 121–127 (2009)

    Article  Google Scholar 

  7. Kinderlehrer D., Stampaccia G.: An Iteration to Variational Inequalities and Their Applications. Academic Press, New York (1990)

    Google Scholar 

  8. Lions J.L., Stampacchia G.: Variational inequalities. Comm. Pure Appl. Math. 20, 493–517 (1967)

    Article  Google Scholar 

  9. Giannessi F., Maugeri A., Pardalos P.M.: Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models, vol. 58. Springer, Berlin (2002)

    Google Scholar 

  10. Pardalos P.M., Rassias T.M., Khan A.A.: Nonlinear Analysis and Variational Problems. Springer, New York (2010)

    Book  Google Scholar 

  11. Floudas C.A., Pardalos P.M.: Encyclopedia of Optimization, 2nd edn. Springer, Berlin (2009)

    Book  Google Scholar 

  12. Iiduka H., Takahashi W., Toyoda M.: Approximation of solutions of variational inequalities for monotone mappings. Panamer. Math. J. 14, 49–61 (2004)

    Google Scholar 

  13. Iiduka H., Takahashi W.: Weak convergence of projection algorithm for variational inequalities in Banach spaces. J. Math. Anal. Appl. 339, 668–679 (2008)

    Article  Google Scholar 

  14. Nakajo K., Takahashi W.: Strong convergence theorems for nonexpansive mappings and nonexpansive semi-groups. J. Math. Anal. Appl. 279, 372–379 (2003)

    Article  Google Scholar 

  15. Solodove M.V., Svaiter B.F.: Forcing strong convergence of proximal point iterations in a Hilbert space. Math. Program 87, 189–202 (2000)

    Google Scholar 

  16. Iiduka H., Takahashi W.: Strong convergence by Hybrid type method for monotone operators in a Banach space. Nonlinear Anal. 68, 3679–3688 (2008)

    Article  Google Scholar 

  17. Zegeye, H., Shahzad, N.: Approximating common solution of variational inequality problems for two monotone mappings in Banach spaces. Optim. Lett. doi:10.1007/s11590-010-0235-5

  18. Zegeye H., Shahzad N.: A hybrid scheme for finite families of equilibrium, variational inequality and fixed point problems. Nonlinear Anal. 74, 263–272 (2011)

    Article  Google Scholar 

  19. Zegeye H., Shahzad N.: A hybrid approximation method for equilibrium, variational inequality and fixed point problems. Nonlinear Anal. Hybrid Syst. 4, 619–630 (2010)

    Article  Google Scholar 

  20. Xu H.K.: Inequalities in Banach spaces with applications. Nonlinear Anal. 16, 1127–1138 (1991)

    Article  Google Scholar 

  21. Zegeye H., Ofoedu E.U., Shahzad N.: Convergence theorems for equilibrium problem, variational inequality problem and countably infinite relatively quasi-nonexpansive mappings. Appl. Math. Comput. 216, 3439–3449 (2010)

    Article  Google Scholar 

  22. Tan K.-K., Xu H.K.: Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process. J. Math. Anal. Appl. 178, 301–308 (1993)

    Article  Google Scholar 

  23. Matsushita S., Takahashi W.: A strong convergence theorem for relatively nonexpansive mappings in a Banach space. J. Approx. Theory 134, 257–266 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Shahzad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zegeye, H., Shahzad, N. Strong convergence theorems for variational inequality problems and quasi-\({\phi}\)-asymptotically nonexpansive mappings. J Glob Optim 54, 101–116 (2012). https://doi.org/10.1007/s10898-011-9744-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9744-8

Keywords

Mathematics Subject Classification (2000)

Navigation