Skip to main content
Log in

Think co(mpletely)positive ! Matrix properties, examples and a clustered bibliography on copositive optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Copositive optimization is a quickly expanding scientific research domain with wide-spread applications ranging from global nonconvex problems in engineering to NP-hard combinatorial optimization. It falls into the category of conic programming (optimizing a linear functional over a convex cone subject to linear constraints), namely the cone \({\mathcal{C}}\) of all completely positive symmetric n × n matrices (which can be factorized into \({FF^\top}\) , where F is a rectangular matrix with no negative entry), and its dual cone \({\mathcal{C}^*}\) , which coincides with the cone of all copositive matrices (those which generate a quadratic form taking no negative value over the positive orthant). We provide structural algebraic properties of these cones, and numerous (counter-)examples which demonstrate that many relations familiar from semidefinite optimization may fail in the copositive context, illustrating the transition from polynomial-time to NP-hard worst-case behaviour. In course of this development we also present a systematic construction principle for non-attainability phenomena, which apparently has not been noted before in an explicit way. Last but not least, also seemingly for the first time, a somehow systematic clustering of the vast and scattered literature is attempted in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amaral P., Bomze I.M., Júdice J.J.: Copositivity and constrained fractional quadratic problems Technical Report TR-ISDS 2010-05. University of Vienna, Vienna (2010)

    Google Scholar 

  2. Andersson L.-E., Chang G.Z., Elfving T.: Criteria for copositive matrices using simplices and barycentric coordinates. Linear Algebra Appl. 220, 9–30 (1995)

    Article  Google Scholar 

  3. Anitescu, M., Cremer, J.F., Potra, F.A.: On the existence of solutions to complementarity formulations of contact problems with friction. In: Complementarity and variational problems (Baltimore, MD, 1995), pp. 12–21. SIAM, Philadelphia, PA (1997)

  4. Anitescu M., Potra F.A.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dyn. 14(3), 231–247 (1997)

    Article  Google Scholar 

  5. Anitescu M., Potra F.A.: A time-stepping method for stiff multibody dynamics with contact and friction. Int. J. Numer. Methods Eng. 55(7), 753–784 (2002)

    Article  Google Scholar 

  6. Anstreicher K.M., Burer S.: D. C. versus copositive bounds for standard QP. J. Glob. Optim. 33(2), 299–312 (2005)

    Article  Google Scholar 

  7. Anstreicher K. M., Burer S.: Computable representations for convex hulls of low-dimensional quadratic forms. Math. Programm. 124(1–2, Ser. B), 33–43 (2010)

    Article  Google Scholar 

  8. Azé D., Hiriart-Urruty J.-B.: Optimal Hoffman-type estimates in eigenvalue and semidefinite inequality constraints. J. Glob. Optim. 24(2), 133–147 (2002)

    Article  Google Scholar 

  9. Baratchart L., Berthod M., Pottier L.: Optimization of positive generalized polynomials under l p constraints. J. Convex Anal. 5(2), 353–379 (1998)

    Google Scholar 

  10. Barioli F.: Decreasing diagonal elements in completely positive matrices. Rend. Sem. Mat. Univ. Padova 100, 13–25 (1998)

    Google Scholar 

  11. Barioli F., Berman A.: The maximal cp-rank of rank k completely positive matrices. Linear Algebra Appl. 363, 17–33 (2003)

    Article  Google Scholar 

  12. Barker G. P.: Theory of cones. Linear Algebra Appl. 39, 263–291 (1981)

    Article  Google Scholar 

  13. Baston, V.J.D.: Extreme copositive quadratic forms. Acta Arith. 15:319–327 (1968/1969)

    Google Scholar 

  14. Baumert, L.D.: Extreme copositive quadratic forms. PhD thesis, California Institute of Technology, Pasadena (1965)

  15. Baumert L.D.: Extreme copositive quadratic forms. Pac J. Math. 19, 197–204 (1966)

    Google Scholar 

  16. Baumert L.D.: Extreme copositive quadratic forms. II. Pac J. Math. 20, 1–20 (1967)

    Google Scholar 

  17. Berman A.: Cones, matrices and mathematical programming. Lecture Notes in Economics and Mathematical Systems, Vol. 79. Springer, Berlin (1973)

    Book  Google Scholar 

  18. Berman A.: Complete positivity. Linear Algebra Appl. 107, 57–63 (1988)

    Article  Google Scholar 

  19. Berman A., Hershkowitz D.: Combinatorial results on completely positive matrices. Linear Algebra Appl. 95, 111–125 (1987)

    Article  Google Scholar 

  20. Berman A., Plemmons R. J.: Nonnegative matrices in the mathematical sciences volume 9 of classics in applied mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1994)

    Book  Google Scholar 

  21. Berman A., Rothblum U. G.: A note on the computation of the CP-rank. Linear Algebra Appl. 419(1), 1–7 (2006)

    Article  Google Scholar 

  22. Berman A., Shaked-Monderer N.: Completely Positive Matrices. World Scientific Publishing Co. Inc., River Edge, NJ (2003)

    Book  Google Scholar 

  23. Berry M.W., Browne M., Langville A.N., Pauca V.P., Plemmons R.J.: Algorithms and applications for approximate nonnegative matrix factorization. Comput. Stat. Data Anal. 52(1), 155–173 (2007)

    Article  Google Scholar 

  24. Bertsimas D., Popescu I.: Optimal inequalities in probability theory: a convex optimization approach. SIAM J. Optim. 15(3), 780–804 (2005)

    Article  Google Scholar 

  25. Bomze I.M.: Remarks on the recursive structure of copositivity. J. Inf. Optim. Sci. 8(3), 243–260 (1987)

    Google Scholar 

  26. Bomze, I.M.: Copositivity and optimization. In: XII Symposium on Operations Research (Passau, 1987), Volume 58 of Methods Operations Research (pp. 27–35). Athenäum/Hain/Hanstein, Königstein (1989)

  27. Bomze I.M.: Copositivity conditions for global optimality in indefinite quadratic programming problems. Czech. J. Oper. Res. 1, 7–19 (1992)

    Google Scholar 

  28. Bomze I.M.: Detecting all evolutionarily stable strategies. J. Optim. Theory Appl. 75(2), 313–329 (1992)

    Article  Google Scholar 

  29. Bomze I.M.: Checking positive-definiteness by three statements. Int. J. Math. Edu. Sci. Technol. 26(26), 289–294 (1995)

    Google Scholar 

  30. Bomze I.M.: Block pivoting and shortcut strategies for detecting copositivity. Linear Algebra Appl. 248, 161–184 (1996)

    Article  Google Scholar 

  31. Bomze I.M.: Evolution towards the maximum clique. J. Glob. Optim. 10(2), 143–164 (1997)

    Article  Google Scholar 

  32. Bomze I.M.: Global escape strategies for maximizing quadratic forms over a simplex. J. Glob. Optim. 11(3), 325–338 (1997)

    Article  Google Scholar 

  33. Bomze, I.M.: Löwner ordering of partial Schur complements and application to copositivity. Report 98–06, Institut für Statistik, Operations Research und Computerverfahren, Universität Wien (1998)

  34. Bomze I.M.: On standard quadratic optimization problems. J. Glob. Optim. 13(4), 369–387 (1998)

    Article  Google Scholar 

  35. Bomze, I.M.: Copositivity aspects of standard quadratic optimization problems. In: Optimization, Dynamics, and Economic Analysis, Physica, pp. 1–11. Heidelberg (2000)

  36. Bomze I.M.: Linear-time copositivity detection for tridiagonal matrices and extension to block-tridiagonality. SIAM J. Matrix Anal. Appl. 21(3), 840–848 (2000)

    Article  Google Scholar 

  37. Bomze I.M.: Branch-and-bound approaches to standard quadratic optimization problems. J. Glob. Optim. 22(1–4), 17–37 (2002)

    Article  Google Scholar 

  38. Bomze I.M.: Regularity versus degeneracy in dynamics, games, and optimization: a unified approach to different aspects. SIAM Rev. 44(3), 394–414 (2002)

    Article  Google Scholar 

  39. Bomze I.M.: Perron-Frobenius property of copositive matrices, and a block copositivity criterion. Linear Algebra Appl. 429(1), 68–71 (2008)

    Article  Google Scholar 

  40. Bomze I.M.: Building a completely positive factorization. Technical Report TR-ISDS 2009-06. University of Vienna, Vienna (2009)

    Google Scholar 

  41. Bomze I.M.: Copositive optimization. In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization, pp. 561–564. Springer, New York (2009)

    Chapter  Google Scholar 

  42. Bomze, I.M. (2010). Global optimization: A quadratic programming perspective. In: Nonlinear Optimization, volume 1989 of Lecture Notes in Math. (pp. 1–53). Springer, Berlin

  43. Bomze, I.M.: Copositive optimization—recent developments and applications. Eur. J. Oper. Res. (to appear, 2011)

  44. Bomze I.M., Danninger G.: A global optimization algorithm for concave quadratic programming problems. SIAM J. Optim. 3(4), 826–842 (1993)

    Article  Google Scholar 

  45. Bomze I.M., Danninger G.: A finite algorithm for solving general quadratic problems. J. Glob. Optim. 4(1), 1–16 (1994)

    Article  Google Scholar 

  46. Bomze I.M., de Klerk E.: Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. J. Glob. Optim. 24(2), 163–185 (2002)

    Article  Google Scholar 

  47. Bomze I.M., Dür M., de Klerk E., Roos C., Quist A.J., Terlaky T.: On copositive programming and standard quadratic optimization problems. J. Glob. Optim. 18(4), 301–320 (2000)

    Article  Google Scholar 

  48. Bomze I.M., Eichfelder G.: Copositivity detection by difference-of-convex decomposition and omega-subdivision. Technical Report TR-ISDS 2010-01. University of Vienna, Vienna (2010)

    Google Scholar 

  49. Bomze I.M., Frommlet F., Locatelli M.: Copositivity cuts for improving SDP bounds on the clique number. Math. Program. 124(1–2, Ser. B), 13–32 (2010)

    Article  Google Scholar 

  50. Bomze I.M., Frommlet F., Rubey M.: Improved SDP bounds for minimizing quadratic functions over the l 1-ball. Optim. Lett. 1(1), 49–59 (2007)

    Article  Google Scholar 

  51. Bomze I.M., Jarre F.: A note on Burer’s copositive representation of mixed-binary QPs. Optim. Lett. 4(3), 465–472 (2010)

    Article  Google Scholar 

  52. Bomze I.M., Jarre F., Rendl F.: Quadratic Factorization heuristics for copositive programming. Math. Program. Comput. 3(1), 37–57 (2011)

    Article  Google Scholar 

  53. Bomze I.M., Locatelli M., Tardella F.: New and old bounds for standard quadratic optimization: dominance, equivalence and incomparability. Math. Program. 115(Ser. A(1)), 31–64 (2008)

    Article  Google Scholar 

  54. Bomze I.M., Palagi L.: Quartic formulation of standard quadratic optimization problems. J. Glob. Optim. 32(2), 181–205 (2005)

    Article  Google Scholar 

  55. Bomze, I.M., Pelillo, M., Giacomini R.: Evolutionary approach to the maximum clique problem: empirical evidence on a larger scale. In: Developments in Global Optimization (Szeged, 1995), volume 18 of Nonconvex Optimization Application, pp. 95–108. Kluwer Academic Publisher, Dordrecht (1997)

  56. Bomze I.M., Pötscher B.M.: Game Theoretical Foundations of Evolutionary Stability, volume 324 of Lecture Notes in Economics and Mathematical Systems. Springer, Berlin (1989)

    Google Scholar 

  57. Bomze I.M., Schachinger W.: Multi-standard quadratic optimization: interior point methods and cone programming reformulation. Comput. Optim. Appl. 45(2), 237–256 (2010)

    Article  Google Scholar 

  58. Borwein J.M.: Necessary and sufficient conditions for quadratic minimality. Numer. Funct. Anal. Optim. 5, 127–140 (1982)

    Article  Google Scholar 

  59. Boyd S., Vandenberghe L.: Convex Optimization. Cambridge University Press, New York (2004)

    Google Scholar 

  60. Brogliato B., ten Dam A.A., Paoli L., Génot F., Abadie M.: Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. ASME Appl. Mech. Rev. 55(2), 107–150 (2002)

    Article  Google Scholar 

  61. Broom M., Cannings C., Vickers G.T.: On the number of local maxima of a constrained quadratic form. Proc. Roy. Soc. London Ser. A 443(1919), 573–584 (1993)

    Article  Google Scholar 

  62. Buliga M.: Four applications of majorization to convexity in the calculus of variations. Linear Algebra Appl. 429(7), 1528–1545 (2008)

    Article  Google Scholar 

  63. Bundfuss, S.: Copositive Matrices Copositive Programming and Applications Dissertation. Technische Universit ät Darmstadt, Darmstadt Germany (2009)

  64. Bundfuss S., Dür M.: Algorithmic copositivity detection by simplicial partition. Linear Algebra Appl. 428(7), 1511–1523 (2008)

    Article  Google Scholar 

  65. Bundfuss S., Dür M.: An adaptive linear approximation algorithm for copositive programs. SIAM J. Optim. 20(1), 30–53 (2009)

    Article  Google Scholar 

  66. Bundfuss S., Dür M.: Copositive Lyapunov functions for switched systems over cones. Syst. Control Lett. 58(5), 342–345 (2009)

    Article  Google Scholar 

  67. Burer S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. 120(Ser. A(2)), 479–495 (2009)

    Article  Google Scholar 

  68. Burer S.: Copositive programming. In: Anjos, M.F., Lasserre, J.B. (eds) Handbook of Semidefinite, Cone and Polynomial Optimization: Theory, Algorithms, Software and Applications, International Series in Operations Research and Management Science, Springer, New York (2011)

    Google Scholar 

  69. Burer S., Anstreicher K.M., Dür M.: The difference between 5 × 5 doubly nonnegative and completely positive matrices. Linear Algebra Appl. 431(9), 1539–1552 (2009)

    Article  Google Scholar 

  70. Burer, S., Dong, H.: Separation and relaxation for cones of quadratic forms. Working paper, Department of Management Sciences, University of Iowa, Iowa City IA, May (2010)

  71. Busygin S.: Copositive programming. In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization, pp. 564–567. Springer, New York (2009)

    Chapter  Google Scholar 

  72. Çamlıbel M.K., Schumacher J.M.: Copositive Lyapunov functions. In: Blondel, V., Megretski, A. (eds) Unsolved problems in mathematical systems and control theory, pp. 189–193. Princeton University Press, Princeton New Jersey (2004)

    Google Scholar 

  73. Contesse L.B.: Une caractérisation complète des minima locaux. Numer. Math. 34, 315–332 (1980)

    Article  Google Scholar 

  74. Cottle R.W.: A field guide to the matrix classes found in the literature of the linear complementarity problem. J. Glob. Optim. 46, 571–580 (2010)

    Article  Google Scholar 

  75. Cottle R.W., Ferland J.A.: Matrix-theoretic criteria for the quasi-convexity and pseudo-convexity of quadratic functions. Linear Algebra Appl. 5, 123–136 (1972)

    Article  Google Scholar 

  76. Cottle R.W., Habetler G.J., Lemke C.E.: On classes of copositive matrices. Linear Algebra Appl. 3, 295–310 (1970)

    Article  Google Scholar 

  77. Cottle, R.W., Habetler, G.J., Lemke, C.E.: Quadratic forms semi-definite over convex cones. In: Proceedings of the Princeton Symposium on Mathematical Programming (Princeton Univ., 1967), pp. 551–565. Princeton University Press, Princeton (1970)

  78. Cottle R.W., Pang J.-S., Stone R.E.: The Linear Complementarity Problem. Computer Science and Scientific Computing. Academic Press Inc., Boston, MA (1992)

    Google Scholar 

  79. Crouzeix J.-P., Hassouni A., Lahlou A., Schaible S.: Positive subdefinite matrices, generalized monotonicity, and linear complementarity problems. SIAM J. Matrix Anal. Appl. 22(1), 66–85 (2000)

    Article  Google Scholar 

  80. Crouzeix J.-P., Martínez-Legaz J.E., Seeger A.: An alternative theorem for quadratic forms and extensions. Linear Algebra Appl. 215, 121–134 (1995)

    Article  Google Scholar 

  81. Dacorogna B.: Necessary and sufficient conditions for strong ellipticity of isotropic functions in any dimension. Discret. Contin. Dyn. Syst. Ser. B 1(2), 257–263 (2001)

    Article  Google Scholar 

  82. Danninger, G.: Kopositivität symmetrischer Matrizen auf polyhedralen Kegeln. Dissertation, Universität Wien, Vienna Austria (1988)

  83. Danninger, G.: A recursive algorithm for determining (strict) copositivity of a symmetric matrix. In: XIV Symposium on Operations Research (Ulm, 1989), volume 62 of Methods Oper. Res., pp. 45–52. Hain, Frankfurt am Main (1990)

  84. Danninger G.: Role of copositivity in optimality criteria for nonconvex optimization problems. J. Optim. Theory Appl. 75(3), 535–558 (1992)

    Article  Google Scholar 

  85. Danninger G., Bomze I.M.: Copositivity and nonconvex optimization. In: Gritzmann, P., Hettich, R., Horst, R., Sachs, E. (eds) Operations Research ’91, pp. 75–79. Physica-Verlag, 75 (1992)

    Google Scholar 

  86. Danninger G., Bomze I.M.: Using copositivity for global optimality criteria in concave quadratic programming problems. Math. Program. 62(Ser. A(3)), 575–580 (1993)

    Article  Google Scholar 

  87. Danninger, G., Bomze, I.M.: Generalizing convexity for second order optimality conditions. In: Komlosi S., Rapcsak T., Schaible S. (eds.), Proceedings of the Fourth International Workshop on Generalized Convexity, PTcs, Hungary, 1992, volume 405 of Lecture Notes in Economics and Math. Systems, Springer, pp. 137–144 (1994)

  88. Daykin D.E., Leitch R.D.: Problems and solutions: solutions of advanced problems: 5867. Amer. Math. Mon. 80(10), 1148–1150 (1973)

    Article  Google Scholar 

  89. de Klerk E.: The complexity of optimizing over a simplex, hypercube or sphere: a short survey. CEJOR Cent. Eur. J. Oper. Res. 16(2), 111–125 (2008)

    Article  Google Scholar 

  90. de Klerk, E., Dobre, C., Pasechnik, D.V.: Numerical block diagonalization of matrix *-algebras with application to semidefinite programming. Math. Program. (to appear, 2011)

  91. de Klerk, E., Laurent, M., Parrilo P.: On the equivalence of algebraic approaches to the minimization of forms on the simplex. In: Positive Polynomials in Control, Volume 312 of Lecture Notes in Control and Inform. Sci., pp. 121–132. Springer, Berlin (2005)

  92. de Klerk E., Maharry J., Pasechnik D.V., Richter R.B., Salazar G.: Improved bounds for the crossing numbers of K m, n and K n . SIAM J. Disc. Math. 20(1), 189–202 (2006)

    Article  Google Scholar 

  93. de Klerk E., Pasechnik D.V.: Approximation of the stability number of a graph via copositive programming. SIAM J. Optim. 12(4), 875–892 (2002)

    Article  Google Scholar 

  94. de Klerk E., Pasechnik D.V.: A linear programming reformulation of the standard quadratic optimization problem. J. Glob. Optim. 37(1), 75–84 (2007)

    Article  Google Scholar 

  95. de Klerk E., Pasechnik D.V., Schrijver A.: Reduction of symmetric semidefinite programs using the regular *-representation. Math. Program. 109(Ser. B(2–3)), 613–624 (2007)

    Article  Google Scholar 

  96. Diananda P.H.: On non-negative forms in real variables some or all of which are non-negative. Proc. Cambr. Philos. Soc. 58, 17–25 (1962)

    Article  Google Scholar 

  97. Dickinson P.J.C.: An improved characterisation of the interior of the completely positive cone. Electron. J. Linear Algebra 20, 723–729 (2010)

    Google Scholar 

  98. Dickinson P.J.C.: Geometry of the copositive and completely positive cones. J. Math. Anal. Appl. 380(1), 377–395 (2011)

    Article  Google Scholar 

  99. Dickinson, P.J.C. Gijben, L.: On the computational complexity of membership problems for the completely positive cone and its dual. Technical Report, Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, The Netherlands (2011)

  100. Ding, B.: A Parametric Solution for Local and Global Optimization. PhD thesis, University of Waterloo, Ontario Canada (1996)

  101. Dobre, C.: Semidefinite programming approaches for structured combinatorial optimization problems. PhD thesis, Tilburg University, The Netherlands (2011)

  102. Dong, B., Lin, M.M., Chu, M.T.: Nonnegative rank factorization via rank reduction, Preprint (2008)

  103. Dong, H.: Symmetric tensor approximation hierarchies for the completely positive cone. Working paper, Applied Mathematics and Computational Sciences Program, University of Iowa, Iowa City (2010)

  104. Dong H., Anstreicher K.: A note on 5 × 5 completely positive matrices. Linear Algebra Appl. 433(5), 1001–1004 (2010)

    Article  Google Scholar 

  105. Dong H., Anstreicher K.: Separating doubly nonnegative and completely positive matrices. Working paper, Dept. of Management Sciences. University of Iowa, Iowa City (2010)

    Google Scholar 

  106. Drew J.H., Johnson C.R., Loewy R.: Completely positive matrices associated with M-matrices. Linear Multilinear Algebra 37(4), 303–310 (1994)

    Article  Google Scholar 

  107. Dukanovic I., Rendl F.: Copositive programming motivated bounds on the stability and the chromatic numbers. Math. Program 121(Ser. A(2)), 249–268 (2010)

    Article  Google Scholar 

  108. Dür M.: Copositive programming—a survey. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds) Recent Advances in Optimization and its Applications in Engineering, pp. 3–20. Springer, Berlin (2010)

    Chapter  Google Scholar 

  109. Dür M., Still G.: Interior points of the completely positive cone. Electron. J. Linear Algebra 17, 48–53 (2008)

    Google Scholar 

  110. Eichfelder G., Jahn J.: Set-semidefinite optimization. J. Convex Anal. 15(4), 767–801 (2008)

    Google Scholar 

  111. Eichfelder, G., Povh, J.: On reformulations of nonconvex quadratic programs over convex cones by set-semidefinite constraints. Preprint 342. Institut fuer Angewandte Mathematik, Erlangen (2010)

  112. Engau, A., Anjos, M.F., Bomze, I.M.: Cutting planes and copositive programming for stable set. Technical Report TR-ISOR 2011-04, University of Vienna, Vienna (2011)

  113. Facchinei F., Pang J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, Vol. I Springer Series in Operations Research. Springer, New York (2003)

    Google Scholar 

  114. Facchinei F., Pang J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Vol. II Springer Series in Operations Research. Springer, New York (2003)

    Google Scholar 

  115. Farebrother R.W.: Necessary and sufficient conditions for a quadratic form to be positive whenever a set of homogeneous linear constraints is satisfied. Linear Algebra and Appl. 16(1), 39–42 (1977)

    Article  Google Scholar 

  116. Fiedler M.: Positivity with respect to the round cone. Mat. Časopis Sloven. Akad. Vied 24, 155–159 (1974)

    Google Scholar 

  117. Forsgren A.L., Gill P.E., Murray W.: On the identification of local minimizers in inertia-controlling methods for quadratic programming. SIAM J. Matrix Anal. Appl. 12(4), 730–746 (1991)

    Article  Google Scholar 

  118. Fukuda, M., Yamashita, M., Kojima M.: Computational prospects on copositive programming (theory of modeling and optimization). Technical Report 1526, Kyoto University Research Information Repository (Japan), December (2006)

  119. Gaddum J.W.: Linear inequalities and quadratic forms. Pac. J. Math. 8, 411–414 (1958)

    Google Scholar 

  120. Ge, D., Ye Y.: On doubly positive semidefinite programming relaxations, Working Paper, August (2010)

  121. Goeleven D., Brogliato B.: Stability and instability matrices for linear evolution variational inequalities. IEEE Trans. Automat. Control 49(4), 521–534 (2004)

    Article  Google Scholar 

  122. Gourion D., Seeger A.: Critical angles in polyhedral convex cones: numerical and statistical considerations. Math. Program. 123(Ser. B(1)), 173–198 (2010)

    Article  Google Scholar 

  123. Gowda M.S.: Pseudomonotone and copositive star matrices. Linear Algebra Appl. 113, 107–118 (1989)

    Article  Google Scholar 

  124. Gowda, M.S.: On Q-matrices. Math. Program. 49, Ser. A(1):139–141 (1990/91)

  125. Guslitser, E.: Uncertatinty-immunized solutions in linear programming. Master thesis, Technion, Israeli Institute of Technology, IE&M faculty (2002)

  126. Gvozdenović, N.: Approximating the stability number and the chromatic number of a graph via semidefinite programming. PhD thesis, University of Amsterdam, The Netherlands (2008)

  127. Gvozdenović N., Laurent M.: The operator Ψ for the chromatic number of a graph. SIAM J. Optim. 19(2), 572–591 (2008)

    Article  Google Scholar 

  128. Hadeler K.P.: On copositive matrices. Linear Algebra Appl. 49, 79–89 (1983)

    Article  Google Scholar 

  129. Hadjicostas P.: Copositive matrices and Simpson’s paradox. Linear Algebra Appl. 264, 475–488 (1997)

    Article  Google Scholar 

  130. Hager W.W., Krylyuk Y.: Graph partitioning and continuous uadratic programming. SIAM J. Discrete Math. 12(4), 500–523 (1999)

    Article  Google Scholar 

  131. Hager W.W., Krylyuk Y.: Multiset graph partitioning. Math. Methods Oper. Res. 55(1), 1–10 (2002)

    Article  Google Scholar 

  132. Hahnloser R.H.R., Seung H.S., Slotine J.-J.E.: Permitted and forbidden sets in symmetric threshold-linear networks. Neural Comput. 15, 621–638 (2003)

    Article  Google Scholar 

  133. Hall M. Jr, Newman M.: Copositive and completely positive quadratic forms. Proc. Camb. Philos. Soc. 59, 329–339 (1963)

    Article  Google Scholar 

  134. Han S.P., Mangasarian O.L.: A conjugate decomposition of the Euclidean space. Proc. Nat. Acad. Sci. U.S.A. 80(16 i.), 5156–5157 (1983)

    Article  Google Scholar 

  135. Han S.P., Mangasarian O.L.: Conjugate cone characterization of positive definite and semidefinite matrices. Linear Algebra Appl. 56, 89–103 (1984)

    Article  Google Scholar 

  136. Hassouni A., Lahlou A., Lamghari A.: Existence theorems for linear complementarity problems on solid closed convex cones. J. Optim. Theory Appl. 126(2), 225–246 (2005)

    Article  Google Scholar 

  137. Hayashi S., Yamaguchi T., Yamashita N., Fukushima M.: A matrix-splitting method for symmetric affine second-order cone complementarity problems. J. Comput. Appl. Math. 175(2), 335–353 (2005)

    Article  Google Scholar 

  138. Haynsworth E., Hoffman A.J.: Two remarks on copositive matrices. Linear Algebra and Appl. 2, 387–392 (1969)

    Article  Google Scholar 

  139. Helmberg, C.: Semidefinite programming for combinatorial optimization. Report 00–34, ZIB-Report (2000)

  140. Hildebrand, R.: The extremal rays of the 5 × 5 copositive cone. Working paper, Optimization Online (2011)

  141. Hiriart-Urruty J.-B., Seeger A.: A variational approach to copositive matrices. SIAM Rev. 52(4), 593–629 (2010)

    Article  Google Scholar 

  142. Hoffman A.J., Pereira F.: On copositive matrices with −1,0,1 entries. J. Comb. Theory Ser. A 14, 302–309 (1973)

    Article  Google Scholar 

  143. Hogben L.: The copositive completion problem: unspecified diagonal entries. Linear Algebra Appl. 420(1), 160–162 (2007)

    Article  Google Scholar 

  144. Hogben L., Johnson C.R., Reams R.: On Copositive completion problem. Linear Algebra Appl. 408, 207–211 (2005)

    Article  Google Scholar 

  145. Horn R.A., Johnson C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  146. Horst R.: On generalized bisection of n-simplices. Math. Comput. 66(218), 691–698 (1997)

    Article  Google Scholar 

  147. Horst R., Tuy H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1990)

    Google Scholar 

  148. Hu, J., Mitchell, J.E., Pang, J.-S.: An LPCC approach to nonconvex quadratic programs. Math. Program. (to appear, 2011)

  149. Huang, Y., Zhang, S.: Complex matrix decomposition and quadratic programming. Technical Report SEEM2005-02, Department of Systems Engineering & Engineering Management, The Chinese University of Hong Kong (2005)

  150. Humes C. Jr., Ou J., Kumar P.R.: The delay of open Markovian queueing networks: uniform functional bounds, heavy traffic pole ultiplicities, and stability. Math. Oper. Res. 22(4), 921–954 (1997)

    Article  Google Scholar 

  151. Ikramov, K.D.: An algorithm, linear with respect to time, for verifying the copositivity of an acyclic matrix. Zh. Vychisl. Mat. Mat. Fiz., 42(12):1771–1773 (2002). English translation in Comput. Math. Math. Phys. 42(12), 1701–1703 (2002)

  152. Ikramov K.D., Savel’eva N.V.: Conditionally definite matrices. J. Math. Sci. New York 98(1), 1–50 (2000)

    Article  Google Scholar 

  153. Iusem A., Seeger A.: Axiomatization of the index of pointedness for closed convex cones. Comput. Appl. Math. 24(2), 245–283 (2005)

    Article  Google Scholar 

  154. Iusem A., Seeger A.: On pairs of vectors achieving the maximal angle of a convex cone. Math. Program. 104(Ser. B(2–3)), 501–523 (2005)

    Article  Google Scholar 

  155. Iusem A., Seeger A.: Measuring the degree of pointedness of a closed convex cone: a metric approach. Math. Nachr. 279(5–6), 599–618 (2006)

    Article  Google Scholar 

  156. Iusem A., Seeger A.: Angular analysis of two classes of non-polyhedral convex cones: the point of view of optimization theory. Comput. Appl. Math. 26(2), 191–214 (2007)

    Article  Google Scholar 

  157. Iusem A., Seeger A.: On convex cones with infinitely many critical angles. Optimization 56(1–2), 115–128 (2007)

    Article  Google Scholar 

  158. Iusem A., Seeger A.: Normality and modulability indices. I. Convex cones in normed spaces. J. Math. Anal. Appl. 338(1), 365–391 (2008)

    Article  Google Scholar 

  159. Iusem A., Seeger A.: Searching for critical angles in a convex cone. Math. Program. 120(Ser. B(1)), 3–25 (2009)

    Article  Google Scholar 

  160. Jacobson, D.H.: Extensions of linear-quadratic control, optimization and matrix theory. Academic Press [Harcourt Brace Jovanovich Publishers], London, 1977. Mathematics in Science and Engineering, Vol. 133

  161. Jarre, F.: Burer’s key assumption for semidefinite and doubly nonnegative relaxations. Optim. Lett. (to appear, 2011)

  162. Jarre F., Schmallowsky K.: On the computation of C* certificates. J. Glob. Optim. 45(2), 281–296 (2009)

    Article  Google Scholar 

  163. Johnson C.R., Reams R.: Spectral theory of copositive matrices. Linear Algebra Appl. 395, 275–281 (2005)

    Article  Google Scholar 

  164. Johnson C.R., Reams R.: Constructing copositive matrices from interior matrices. Electron. J. Linear Algebra 17, 9–20 (2008)

    Google Scholar 

  165. Johnson C.R., Reams R.: Scaling of symmetric matrices by positive diagonal congruence. Linear Multilinear Algebra 57(2), 123–140 (2009)

    Article  Google Scholar 

  166. Jones P.C.: A note on the Talman, Van der Heyden linear complementarity algorithm. Math. Program. 25(1), 122–124 (1983)

    Article  Google Scholar 

  167. Júdice J. J., Raydan M., Rosa S.S., Santos S.A.: On the solution of the symmetric eigenvalue complementarity problem by the spectral projected gradient algorithm Numer. Algorithms 47(4), 391–407 (2008)

    Article  Google Scholar 

  168. Júdice J. J., Sherali H. D., Ribeiro I.M.: The eigenvalue complementarity problem. Comput. Optim. Appl. 37(2), 139–156 (2007)

    Article  Google Scholar 

  169. Kaplan W.: A test for copositive matrices. Linear Algebra Appl. 313(1–3), 203–206 (2000)

    Article  Google Scholar 

  170. Kaplan W.: A copositivity probe. Linear Algebra Appl. 337, 237–251 (2001)

    Article  Google Scholar 

  171. Kaykobad M.: On nonnegative factorization of matrices. Linear Algebra Appl. 96, 27–33 (1987)

    Article  Google Scholar 

  172. Kéri, G.: The Sherman-Morrison formula for the determinant and its application for optimizing quadratic functions on condition sets given by extreme generators. In: Optimization theory (Mátraháza, 1999), volume 59 of Appl. Optim., pp. 119–138. Kluwer Academic Publisher, Dordrecht (2001)

  173. Kimura G., Kossakowski A.: A class of linear positive maps in matrix algebras. II. Open Syst. Inf. Dyn. 11(4), 343–358 (2004)

    Article  Google Scholar 

  174. Kogan N., Berman A.: Characterization of completely positive graphs. Discret Math. 114(1–3), 297–304 (1993)

    Article  Google Scholar 

  175. Kojima M., Megiddo N., Mizuno S.: A general framework of continuation methods for complementarity problems. Math. Oper. Res. 18(4), 945–963 (1993)

    Article  Google Scholar 

  176. Kossakowski A.: A class of linear positive maps in matrix algebras. Open Syst. Inf. Dyn. 10(3), 213–220 (2003)

    Article  Google Scholar 

  177. Kumar, P.R.: Scheduling queueing networks: stability, performance analysis and design. In: Stochastic networks, volume 71 of IMA Vol. Math. Appl. (pp. 21–70). Springer, New York (1995)

  178. Kumar P.R.: A tutorial on some new methods for performance evaluation of queueing networks. IEEE J. Selected Areas Commun. 13(6), 970–980 (1995)

    Article  Google Scholar 

  179. Kumar P.R., Meyn S.P.: Stability of queueing networks and scheduling policies. IEEE Trans. Automat. Control 40(2), 251–260 (1995)

    Article  Google Scholar 

  180. Kumar P.R, Meyn S.P.: Duality and linear programs for stability and performance analysis of queuing networks and scheduling policies. IEEE Trans. Automat. Control 41(1), 4–17 (1996)

    Article  Google Scholar 

  181. Kwon Y.: On hadamard stability for compressible viscoelastic constitutive equations. J. Non-Newtonian Fluid Mech. 65, 151–163 (1996)

    Article  Google Scholar 

  182. Lacoursière, C.: Splitting methods for dry frictional contact problems in rigid multibody systems: preliminary performance results. In: Conference Proceedings from SIGRAD2003, Umeå, Sweden, pp. 20–21, November (2003)

  183. Laffey T.J., Meehan E.: A refinement of an inequality of Johnson, Loewy and London on nonnegative matrices and some applications. Electron. J. Linear Algebra 3, 119–128 (1998)

    Google Scholar 

  184. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim., 11(3):796–817 (2000/01)

    Google Scholar 

  185. Lasserre, J.B.: New approximations for the cone of copositive matrices and its dual. ArXiv e-prints, (1012.2552) (2010)

  186. Laurent M., Rendl F.: Semidefinite programming and integer programming. In: Aardal, K., Nemhauser, G., Weismantel, R. (eds) Handbook on Discrete Optimization, pp. 393–514. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

  187. Leonardi, E., Mellia, M., Ajmone Marsan, M., Neri, F.: On the throughput achievable by isolated and interconnected input-queueing switches under multiclass traffic. In: INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, volume 3, pp. 1605–1614 (2002)

  188. Li P., Feng Y.Y.: Criteria for copositive matrices of order four. Linear Algebra Appl. 194, 109–124 (1993)

    Article  Google Scholar 

  189. Li Y., Kummert A., Frommer A.: A linear programming based analysis of the CP-rank of completely positive matrices. Int. J. Appl. Math. Comput. Sci. 14(1), 25–31 (2004)

    Google Scholar 

  190. Liu J.Q., Song T.T., Du D.Z.: On the necessary and sufficient condition of the local optimal solution of quadratic programming. Chinese Ann. Math., 3, 625–630 (1982) (English abstract)

    Google Scholar 

  191. Locatelli, M., Schoen, F.: On Convex Envelopes and Underestimators for Bivariate Functions. Working paper, Optimization Online (2009)

  192. Loewy R., Schneider H.: Positive operators on the n-dimensional ice cream cone. J. Math. Anal. Appl. 49, 375–392 (1975)

    Article  Google Scholar 

  193. Loewy R., Tam B.-S.: CP rank of completely positive matrices of order 5. Linear Algebra Appl. 363, 161–176 (2003)

    Article  Google Scholar 

  194. Lovász L., Schrijver A.: Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim. 1, 166–190 (1991)

    Article  Google Scholar 

  195. Majthay A.: Optimality conditions for quadratic programming. Math. Program. 1, 359–365 (1971)

    Article  Google Scholar 

  196. Martin D.H.: Conditional positivity of quadratic forms in Hilbert space. SIAM J. Math. Anal. 11(6), 1047–1057 (1980)

    Article  Google Scholar 

  197. Martin D.H.: Finite criteria for conditional definiteness of quadratic forms. Linear Algebra Appl. 39, 9–21 (1981)

    Article  Google Scholar 

  198. Martin D.H., Jacobson D.H.: Copositive matrices and definiteness of quadratic forms subject to homogeneous linear inequality constraints. Linear Algebra Appl. 35, 227–258 (1981)

    Article  Google Scholar 

  199. Martin D.H., Powell M.J.D., Jacobson D.H.: On a decomposition of conditionally positive-semidefinite matrices. Linear Algebra Appl. 39, 51–59 (1981)

    Article  Google Scholar 

  200. Maxfield, J.E., Minc, H.: On the matrix equation XX = A. Proc. Edinburgh Math. Soc. 13(2), 125–129 (1962/1963)

  201. Mesbahi, M., Safonov, M.G., Papavassilopoulos, G.P.: Bilinearity and complementarity in robust control. In: Advances in linear matrix inequality methods in control, volume 2 of Adv. Des. Control, pp. 269–292. SIAM, Philadelphia, PA (2000)

  202. Miller D.A., Zucker S.W.: Copositive-plus Lemke algorithm solves polymatrix games. Oper. Res. Lett. 10(5), 285–290 (1991)

    Article  Google Scholar 

  203. Mohan S.R., Neogy S.K., Das A.K.: On the classes of fully copositive and fully semimonotone matrices. Linear Algebra Appl. 323(1–3), 87–97 (2001)

    Article  Google Scholar 

  204. Mohan, S.R., Talman, A.J. J.: Refinement of Solutions to the Linear Complementarity Problem. Working paper 1998-78, Tilburg University. Center for Economic Research (1998)

  205. Moreau J.-J.: Décomposition orthogonale d’un espace Hilbertien selon deux cônes mutuellement polaires. C. R. Acad. Sci. Paris 255, 238–240 (1962)

    Google Scholar 

  206. Morrison J.R., Kumar P.R.: New linear program performance bounds for queueing networks. J. Optim. Theory Appl. 100(3), 575–597 (1999)

    Article  Google Scholar 

  207. Morrison J.R., Kumar P.R.: New linear program performance bounds for closed queueing networks. Discrete Event Dyn. Syst. 11(4), 291–317 (2001)

    Article  Google Scholar 

  208. Motzkin, T.S.: Copositive quadratic forms. Report 1818, National Bureau of Standards (1952)

  209. Motzkin T.S.: Quadratic forms positive for nonnegative variables not all zero. Notices Amer. Math. Soc. 12, 224 (1965)

    Google Scholar 

  210. Motzkin, T.S.: Signs of minors. In: Inequalities (Proc. Sympos. Wright-Patterson Air Force Base, Ohio, 1965), pp. 225–240. Academic Press, New York (1967)

  211. Murthy G.S.R., Parthasarathy T.: Fully copositive matrices. Math. Program. 82(Ser. A(3)), 401–411 (1998)

    Google Scholar 

  212. Murthy G.S.R., Parthasarathy T., Ravindran G.: A copositive Q-matrix which is not R 0. Math. Program. 61(Ser. A(1)), 131–135 (1993)

    Article  Google Scholar 

  213. Murty K.G.: Linear complementarity, linear and nonlinear programming, volume 3 of Sigma Series in Applied Mathematics. Heldermann Verlag, Berlin (1988)

    Google Scholar 

  214. Murty K.G., Kabadi S.N.: Some NP-complete problems in quadratic and nonlinear programming. Math. Program. 39(2), 117–129 (1987)

    Article  Google Scholar 

  215. Nadler E.: Nonnegativity of bivariate quadratic functions on a triangle. Comput. Aided Geom. Design 9(3), 195–205 (1992)

    Article  Google Scholar 

  216. Natarajan, K., Teo, C.P., Zheng, Z.: Mixed zero-one linear programs under objective uncertainty: A completely positive representation. Operations Research (to appear, 2011)

  217. Pang, J.-S.: Computing generalized nash equilibria. Working paper, Department of Mathematical Sciences, The John Hopkins University (2002)

  218. Parrilo, P.A.: Semidefinite programming based tests for matrix copositivity. In: Proceedings of the 39th IEEE Conference on Decision and Control, volume 96, Sidney, December, pp. 4624–4629 (2000)

  219. Parrilo, P.A.: Structured Semidefinite Programs and Semi-algebraic Geometry Methods in Robustness and Optimization. PhD thesis, California Institute of Technology, Pasadena, CA, May (2000)

  220. Parrilo P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96(Ser. B(2)), 293–320 (2003)

    Article  Google Scholar 

  221. Peña J., Vera J., Zuluaga L.F.: Computing the stability number of a graph via linear and semidefinite programming. SIAM J. Optim. 18(1), 87–105 (2007)

    Google Scholar 

  222. Pintoda Costa A., Seeger A.: Numerical resolution of cone-constrained eigenvalue problems. Comput. Appl. Math. 28(1), 37–61 (2009)

    Google Scholar 

  223. Pintoda Costa A., Seeger A.: Cone-constrained eigenvalue problems: theory and algorithms. Comput. Optim. Appl. 45(1), 25–57 (2010)

    Article  Google Scholar 

  224. Pólik I., Terlaky T.: A survey of the S-lemma. SIAM Rev. 49(3), 371–418 (2007)

    Article  Google Scholar 

  225. Pólya G.: Über positive Darstellung von Polynomen. Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich 73, 141–145 (1928)

    Google Scholar 

  226. Povh J., Rendl F.: A copositive programming approach to graph partitioning. SIAM J. Optim. 18(1), 223–241 (2007)

    Article  Google Scholar 

  227. Povh J., Rendl F.: Copositive and semidefinite relaxations of the quadratic assignment problem. Discrete Optim. 6(3), 231–241 (2009)

    Article  Google Scholar 

  228. Preisig J.C.: Copositivity and the minimization of quadratic functions with nonnegativity and quadratic equality constraints. SIAM J. Control Optim. 34(4), 1135–1150 (1996)

    Article  Google Scholar 

  229. Qian R.X., DeMarco C.L.: An approach to robust stability of matrix polytopes through copositive homogeneous polynomials. IEEE Trans. Automat. Control 37(6), 848–852 (1992)

    Article  Google Scholar 

  230. Queiroz M., Júdice J. J., Humes C. Jr: The symmetric eigenvalue complementarity problem. Math. Comp. 73(248), 1849–1863 (2004)

    Article  Google Scholar 

  231. Quist A.J., de Klerk E., Roos C., Terlaky T.: Copositive relaxation for general quadratic programming. Optim. Methods Softw. 9(1–3), 185–208 (1998)

    Article  Google Scholar 

  232. Raghavan T.E.S., Syed Z.: Computing stationary Nash equilibria of undiscounted single-controller stochastic games. Math. Oper. Res. 27(2), 384–400 (2002)

    Article  Google Scholar 

  233. Salce L., Zanardo P.: Completely positive matrices and positivity of least squares solutions. Linear Algebra Appl. 178, 201–216 (1993)

    Article  Google Scholar 

  234. Schachinger W., Bomze I.: A conic duality Frank-Wolfe-type theorem via exact penalization in quadratic optimization. Math. Oper. Res. 34(1), 83–91 (2009)

    Article  Google Scholar 

  235. Seeger A.: Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions. Linear Algebra Appl. 292(1–3), 1–14 (1999)

    Article  Google Scholar 

  236. Seeger A., Torki M.: On eigenvalues induced by a cone constraint. Linear Algebra Appl. 372, 181–206 (2003)

    Article  Google Scholar 

  237. Seeger A., Torki M.: Local minima of quadratic forms on convex cones. J. Glob. Optim. 44(1), 1–28 (2009)

    Article  Google Scholar 

  238. Shaked-Monderer N.: Minimal CP rank. Electron. J. Linear Algebra 8, 140–157 (2001)

    Google Scholar 

  239. Shibata, M., Yamashita, N., Fukushima, M.: The extended semidefinite linear complementarity problem: a reformulation approach. In: Nonlinear analysis and convex analysis (Niigata, 1998), pp. 326–332. World Scientific Publisher, River Edge (1999)

  240. Simpson H.C., Spector S.J.: On copositive matrices and strong ellipticity for isotropic elastic materials. Arch. Rational Mech. Anal. 84(1), 55–68 (1983)

    Article  Google Scholar 

  241. Solodov M.V.: Stationary points of bound constrained minimization reformulations of complementarity problems. J. Optim. Theory Appl. 94(2), 449–467 (1997)

    Article  Google Scholar 

  242. Solodov M.V.: Some optimization reformulations of the extended linear complementarity problem. Comput. Optim. Appl. 13(1-3), 187–200 (1999)

    Article  Google Scholar 

  243. Sponsel, J., Bundfuss, S., Dür, M.: Testing Copositivity Using Semidefinitness, Working paper (2009)

  244. Sturm J.F., Zhang S.: On cones of nonnegative quadratic functions. Math. Oper. Res. 28(2), 246–267 (2003)

    Article  Google Scholar 

  245. Taussky O.: Positive definite matrices. In: Shisha, O. (eds) Inequalities, pp. 309–319. Academic Press, New York (1967)

    Google Scholar 

  246. Tawarmalani M., Sahinidis N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99(Ser. A(3)), 563–591 (2004)

    Article  Google Scholar 

  247. Väliaho H.: Criteria for copositive matrices. Linear Algebra Appl. 81, 19–34 (1986)

    Article  Google Scholar 

  248. Väliaho H.: Testing the definiteness of matrices on polyhedral cones. Linear Algebra Appl. 101, 135–165 (1988)

    Article  Google Scholar 

  249. Väliaho H.: Almost copositive matrices. Linear Algebra Appl. 116, 121–134 (1989)

    Article  Google Scholar 

  250. Väliaho H.: Quadratic-programming criteria for copositive matrices. Linear Algebra Appl. 119, 163–182 (1989)

    Article  Google Scholar 

  251. Väliaho H.: A new proof for the criss-cross method for quadratic programming. Optimization 25(4), 391–400 (1992)

    Article  Google Scholar 

  252. Vandenberghe L., Boyd S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)

    Article  Google Scholar 

  253. Weninger, C.: Kopositivität und quadratische Optimierung. Dissertation, Universität Wien, Vienna, Austria (1993)

  254. Williams A.C.: Boundedness relations for linear constraint sets. Linear Algebra Appl. 3, 129–141 (1970)

    Article  Google Scholar 

  255. Xiang S., Xiang S.: Notes on completely positive matrices. Linear Algebra Appl. 271, 273–282 (1998)

    Article  Google Scholar 

  256. Xu, J., Yao, Y.: A complete algorithm for determining copositive matrices. ArXiv e-prints, (1011.2039) (2010)

  257. Yakubovich, V.A.: S-procedure in nonlinear control theory. Vestnik Leningradskogo Universiteta, Ser. Matematika, Series 1, 13:62–77, 1971. English translation in Vestnik Leningrad Univ., vol. 4, pp. 73–93 (1977)

  258. Yang S., Li X.: Algorithms for determining the copositivity of a given symmetric matrix. Linear Algebra Appl. 430(2–3), 609–618 (2009)

    Article  Google Scholar 

  259. Yang, S., Xu, C., Li, X.: A note on algorithms for determining the copositivity of a given symmetric matrix. J. Inequal. Appl., pages Art. ID 498631, 10 (2010)

    Google Scholar 

  260. Ycart B.: Extrémales du cône des matrices de type non négatif, à coefficients positifs ou nuls. Linear Algebra Appl. 48, 317–330 (1982)

    Article  Google Scholar 

  261. Yıldırım, E.A.: On the accuracy of uniform polyhedral approximations of the copositive cone. Optim. Methods Softw. (to appear, 2011)

  262. Yopp D.A., Hill R.D.: On completely copositive and decomposable linear transformations. Linear Algebra Appl. 312(1–3), 1–12 (2000)

    Article  Google Scholar 

  263. Yuan Y.: On a subproblem of trust region algorithms for constrained optimization. Math. Program. 47(Ser. A(1)), 53–63 (1990)

    Article  Google Scholar 

  264. Zhang X.D., Li J.S.: Factorization index for completely positive graphs. Acta Math. Sin. (Engl. Ser.) 18(4), 823–832 (2002)

    Article  Google Scholar 

  265. Žilinskas, J., Dür, M.: Depth-first simplicial partition for copositivity detection, with an application to MaxClique. Optim. Methods Softw. (to appear, 2011)

  266. Zuluaga L.F., Vera J., Peña J.: LMI approximations for cones of positive semidefinite forms. SIAM J. Optim. 16(4), 1076–1091 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Immanuel M. Bomze.

Additional information

Dedicated to the memory of Reiner Horst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bomze, I.M., Schachinger, W. & Uchida, G. Think co(mpletely)positive ! Matrix properties, examples and a clustered bibliography on copositive optimization. J Glob Optim 52, 423–445 (2012). https://doi.org/10.1007/s10898-011-9749-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9749-3

Keywords

Navigation