Skip to main content
Log in

On some convexity properties of the Least Squares Method for pairwise comparisons matrices without the reciprocity condition

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The relaxation of the reciprocity condition for pairwise comparisons is revisited from the optimization point of view. We show that some special but not extreme cases of the Least Squares Method are easy to solve as convex optimization problems after suitable nonlinear change of variables. We also give some other, less restrictive conditions under which the convexity of a modified problem can be assured, and the global optimal solution of the original problem found by using local search methods. Mathematical and psychological justifications for the relaxation of the reciprocity condition as well as numerical examples are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barvinok, A.: A course in convexity, Graduate Studies in Mathematics, vol. 54. American Mathematical Society, Providence (2002)

  2. Blankmeyer E.: Approaches to consistency adjustments. J. Optim. Theory Appl. 54, 479–488 (1987)

    Article  Google Scholar 

  3. Bozóki S.: Solution of the least squares method problem of pairwise comparisons matrices. Central Eur. J. Oper. Res. 16, 345–358 (2008)

    Article  Google Scholar 

  4. Carrizosa E., Messine F.: An exact global optimization method for deriving weights from pairwise comparison matrices. J. Global Optim. 38, 237–247 (2007)

    Article  Google Scholar 

  5. Choo E.U., Wedley W.C.: A common framework for deriving preference values from pairwise comparison matrices. Comput. Oper. Res. 31, 893–908 (2004)

    Article  Google Scholar 

  6. Chu A.T.W., Kalaba R.E., Spingarn K.: A comparison of two methods for determining the weight belonging to fuzzy sets. J. Optim. Theory Appl. 4, 531–538 (1979)

    Article  Google Scholar 

  7. Condorcet. M.: Essai sur l’Application de l’Analyse à la Probabilité des Décisions Rendues à la Pluralité des Voix, Paris (1785)

  8. Crawford G., Williams C.: A note on the analysis of subjective judgment matrices. J. Math. Psychol. 29, 387–405 (1985)

    Article  Google Scholar 

  9. De Jong P.: A statistical approach to Saaty’s scaling method for priorities. J. Math. Psychol. 28, 467–478 (1984)

    Article  Google Scholar 

  10. Diaz-Balteiro L., González-Pachón J., Romero C.: Forest management with multiple criteria and multiple stakeholders: an application to two public forests in Spain. Scand. J. For. Res. 24(1), 87–93 (2009)

    Article  Google Scholar 

  11. Dong Y., Li H., Xu Y.: On reciprocity indexes in the aggregation of fuzzy preference relations using the OWA operator. Fuzzy Sets Syst. 159, 185–192 (2008)

    Article  Google Scholar 

  12. Dopazo E., González-Pachón J.: Consistency-driven approximation of a pairwise comparison matrix. Kybernetika 39(5), 561–568 (2003)

    Google Scholar 

  13. Farkas A., Lancaster P., Rózsa P.: Consistency adjustment for pairwise comparison matrices. Numer. Linear Algebra Appl. 10, 689–700 (2003)

    Article  Google Scholar 

  14. Fechner G.T.: Elemente der Psychophysik. Breitkopf & Härtel, Leipzig (1860)

    Google Scholar 

  15. Figiel T.: On the moduli of convexity and smoothness. Studia Math. 56, 121–155 (1976)

    Google Scholar 

  16. Fülöp J.: A method for approximating pairwise comparison matrices by consistent matrices. J. Global Optim. 42, 423–442 (2008)

    Article  Google Scholar 

  17. Fülöp, J., Koczkodaj, W.W., Szarek, S.J.: A different perspective on a scale for pairwise comparisons. Transactions on Computational Collective Intelligence, Lecture Notes in Computer Science, vol. 6220, pp. 71–84 (2010)

  18. Golany B., Kress M.: A multicriteria evaluation method for obtaining weights from ratio-scale matrices. Eur. J. Oper. Res. 69, 210–220 (1993)

    Article  Google Scholar 

  19. González-Pachón J., Rodríguez-Galiano M.I., Romero C.: Transitive approximation to pairwise comparison matrices by using interval goal programming. J. Oper. Res. Soc. 54, 532–538 (2003)

    Article  Google Scholar 

  20. González-Pachón J., Romero C.: A method for dealing with inconsistencies in pairwise comparisons. Eur. J. Oper. Res. 158(2), 351–361 (2004)

    Article  Google Scholar 

  21. González-Pachón J., Romero C.: Inferring consensus weights from pairwise comparison matrices without suitable properties. Ann. Oper. Res. 154, 123–132 (2007)

    Article  Google Scholar 

  22. Hovanov N.V., Kolari J.W., Sokolov M.V.: Deriving weights from general pairwise comparison matrices. Math. Soc. Sci. 55, 205–220 (2008)

    Article  Google Scholar 

  23. Jensen, R.E.: Comparison of eigenvector, least squares, chi squares and logarithmic least squares methods of scaling a reciprocal matrix. Working paper 153, Trinity University (1983)

  24. Jensen R.E.: Alternative scaling method for priorities in hierarchical structures. J. Math. Psychol. 28, 317–332 (1984)

    Article  Google Scholar 

  25. Koczkodaj W.W., Orlowski M.: Computing a consistent approximation to a generalized pairwise comparisons matrix. Comput. Math. Appl. 37(2), 79–85 (1999)

    Article  Google Scholar 

  26. Krantz S.G., Parks S.G.: A Primer of Real Analytic Functions. Birkhäuser Verlag, Basel (1992)

    Google Scholar 

  27. Kurosh A.G.: Higher Algebra. Mir Publishers, Moscow (1972)

    Google Scholar 

  28. Limayem F., Yannou B.: Generalization of the RCGM and LSLR pairwise comparison methods. Comput. Math. Appl. 48(3–4), 539–548 (2004)

    Article  Google Scholar 

  29. Llull, R.: Artifitium electionis personarum (before 1283)

  30. Mikhailov L.: A fuzzy programming method for deriving priorities in the analytic hiarerchy process. J. Oper. Res. Soc. 51, 341–349 (2000)

    Google Scholar 

  31. Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1970)

    Google Scholar 

  32. Saaty T.L.: A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15, 234–281 (1977)

    Article  Google Scholar 

  33. Sekitani K., Yamaki N.: A logical interpretation for the eigenvalue method in AHP. J. Oper. Res. Soc. Jpn. 42, 219–232 (1999)

    Article  Google Scholar 

  34. Triantaphyllou E., Pardalos P.M., Mann S.H.: The problem of determining membership values in fuzzy sets in real world situations. In: Brown, D.E., White, C.C. (eds) Operations Research and Artificial Intelligence: The integration of problem solving strategies, pp. 197–214. Kluwer Academic Publishers, Dordrecht (1990)

    Chapter  Google Scholar 

  35. Triantaphyllou E., Lootsma F., Pardalos P.M., Mann S.H.: On the evaluation and application of different scales for quantifying pairwise comparisons in fuzzy sets. J. Multi-Criteria Decis. Anal. 3, 133–155 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fülöp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fülöp, J., Koczkodaj, W.W. & Szarek, S.J. On some convexity properties of the Least Squares Method for pairwise comparisons matrices without the reciprocity condition. J Glob Optim 54, 689–706 (2012). https://doi.org/10.1007/s10898-011-9785-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9785-z

Keywords

Navigation