Abstract
Robust optimization is typically based on repeated calls to a deterministic simulation program that aim at both propagating uncertainties and finding optimal design variables. Often in practice, the “simulator” is a computationally intensive software which makes the computational cost one of the principal obstacles to optimization in the presence of uncertainties. This article proposes a new efficient method for minimizing the mean of the objective function. The efficiency stems from the sampling criterion which simultaneously optimizes and propagates uncertainty in the model. Without loss of generality, simulation parameters are divided into two sets, the deterministic optimization variables and the random uncertain parameters. A kriging (Gaussian process regression) model of the simulator is built and a mean process is analytically derived from it. The proposed sampling criterion that yields both optimization and uncertain parameters is the one-step ahead minimum variance of the mean process at the maximizer of the expected improvement. The method is compared with Monte Carlo and kriging-based approaches on analytical test functions in two, four and six dimensions.
Similar content being viewed by others
References
Audze P., Eglajs V.: New approach for design of experiments. Problems Dyn. Strengths 35, 104–107 (1977) (in Russian)
Auzins, J.: Direct optimization of experimental designs. In: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Number AIAA Paper: 2004-4578 (2004)
Beyer H.-G., Sendhoff B.: Robust optimization—a comprehensive survey. Comput. Methods Appl. Mech. Eng. 196(33–34), 3190–3218 (2007)
Dellino, G., Kleijnen, J.P.C., Meloni, C.: Robust optimization in simulation: Taguchi and Krige combined. Technical Report (2009)
Du X., Chen W.: Towards a better understanding of modeling feasibility robustness in engineering design. ASME J. Mech. Des. 122, 385–394 (1999)
Eldred, M.S., Bichon, B.J., Mahadevan, S.: Reliability-based design optimization using efficient global reliability analysis. In: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper 2009-2261
Forrester A.I., Bressloff N.W., Keane A.J.: Optimization using surrogate models and partially converged computational fluid dynamics simulations. Proc. R. Soc. A Math. Phys. Eng. Sci. 462(2071), 2177–2204 (2006)
Forrester, A.I.J., Jones, D.R.: Global optimization of deceptive functions with sparse sampling. In: 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 10–12 Sep 2008, 15 pp, Victoria, Canada (2008)
Ginsbourger D., Le Riche R., Carraro L.: Kriging is well-suited to parallelize optimization. In: Tenne, Y., Goh, C.-K. (eds) Computational Intelligence in Expensive Optimization Problems, Springer series in Evolutionary Learning and Optimization, pp. 131–162. Springer, Berlin (2009)
Girard, A.: Approximate Methods for Propagation of Uncertainty with Gaussian Process Models. PhD thesis (2004)
Hansen N.: The CMA evolution strategy: a comparing review. In: Lozano, J.A., Larranaga, P., Inza, I., Bengoetxea, E. (eds) Towards a New Evolutionary Computation. Advances on Estimation of Distribution Aalgorithms, pp. 75–102. Springer, Berlin (2006)
Huang D., Allen T.T., Notz W.I., Zeng N.: Global optimization of stochastic black-box systems via sequential kriging meta-models. J. Global Optim. 34(3), 441–466 (2006)
Huang B., Du X.: A robust design method using variable transformation and Gauss–Hermite integration. Int. J. Numer. Methods Eng. 66(12), 1841–1858 (2006)
Janusevskis, J.: KRIging Scilab Package. http://atoms.scilab.org/toolboxes/krisp/ (2011)
Janusevskis, J., Le Riche, R.: Simultaneous kriging-based sampling for optimization and uncertainty propagation. Technical Report, Equipe: Calcul de Risque, Optimisation et Calage par Utilisation de Simulateurs—CROCUS-ENSMSE—UR LSTI—Ecole Nationale Supérieure des Mines de Saint-Etienne. Deliverable no. 2.2.2-A of the ANR/OMD2 project available as http://hal.archives-ouvertes.fr/hal-00506957
Jin, R., Du, X., Chen, W.: The use of metamodeling techniques for optimization under uncertainty. In: 2001 ASME Design Automation Conference, Paper No. DAC21039, pp. 99–116. (2001)
Jones D.R.: A taxonomy of global optimization methods based on response surfaces. J. Global Optim. 21, 345–383 (2001)
Jones D.R., Schonlau M., Welch W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)
Le Riche, R., Picheny, V.: Gears design with shape uncertainties using controlled monte carlo simulations and kriging. In: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper 2009-2257
McKay M.D., Beckman R.J., Conover W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)
O’Hagan A.: Bayes-hermite quadrature. J. Stat. Plan. Inference 29, 245–260 (1991)
Park G.-J., Lee T.-H., Kwon H.L., Hwang K.-H.: Robust design : an overview. AIAA J. 44(1), 181–191 (2006)
Picheny, V., Ginsbourger, D., Richet, Y.: Noisy expected improvement and on-line computation time allocation for the optimization of simulators with tunable fidelity. In: EngOpt 2010—2nd International Conference on Engineering Optimization
Rasmussen C.E., Williams C.K.I.: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press, Cambridge (2005)
Rasmussen, C.E., Ghahramani, Z.: Bayesian monte carlo. In: Thrun, S., Becker, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems, vol. 15. MIT Press, Cambridge
Sacks J., Welch W.J., Mitchell T.J., Wynn H.P.: Design and analysis of computer experiments. Stat. Sci. 4(4), 409–423 (1989)
Sahinidis N.V.: Optimization under uncertainty: state-of-the-art and opportunities. Comput. Chem. Eng. 28, 971–983 (2004)
Salazar D., Le Riche R., Bay X.: An empirical study of the use of confidence levels in RBDO with Monte Carlo simulations. In: Piotr, Breitkopf., Rajan Filomeno, Coelho (eds) Multidisciplinary Design Optimization in Computational Mechanics, Wiley, New York (2009)
Sasena, M.J.: Flexibility and Efficiency Enhancements for Constrained Global Design Optimization with Kriging Approximations. PhD thesis (2002)
Taflanidis, A.: Stochastic System Design and Applications to Stochastically Robust Structural Control. PhD thesis (2007)
Vazquez E., Villemonteix J., Sidorkiewicz M., Walter E.: Global optimization based on noisy evaluations: an empirical study of two statistical approaches. J. Phys. Conf. Ser. 135(N012100), 8 (2008)
Villemonteix J., Vázquez E., Walter E.: An informational approach to the global optimization of expensive-to-evaluate functions. J. Global Optim. 44(4), 509–534 (2009)
Williams B.J., Santner T.J., Notz W.I.: Sequential design of computer experiments to minimize integrated response functions. Stat. Sin 10(4), 1133–1152 (2000)
Wojkiewicz, S.F., Trucano, T., Eldred, M.S., Giunta, A.A.: Formulations for surrogate-based optimization under uncertainty. In: 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA Paper 2002-5585
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Janusevskis, J., Le Riche, R. Simultaneous kriging-based estimation and optimization of mean response. J Glob Optim 55, 313–336 (2013). https://doi.org/10.1007/s10898-011-9836-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-011-9836-5