Skip to main content
Log in

Optimal control problems arising in the zinc sulphate electrolyte purification process

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Before zinc electrolysis, zinc powder is added to the zinc sulphate electrolyte solution to facilitate the removal of harmful metallic ions. This purification process can be modeled by a time delay differential equation. Since some of the parameters in this model are unknown, zinc powder is normally added excessively. We use an optimization technique to estimate the unknown parameters from experimental data. Then, we formulate an optimal control problem to minimize the amount of zinc powder added. We solve this optimal control problem numerically by using the control parametrization method. The results indicate that the amount of zinc powder added can be decreased, on average, by approximately 7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bratt G.C.: Impurity effect in the electrowinning of zinc and cadmium. Electrochem. Technol. 2, 323–326 (1964)

    Google Scholar 

  2. Cebuhar W.A., Costanza V.: Nonlinear control of CSTR’s. Chem. Eng. Sci. 39(12), 1715–1722 (1984)

    Article  Google Scholar 

  3. Dreher T.M., Nelson A., Demopoulos G.P., Filippou D.: The kinetics of cobalt removal by cementation from an industrial zinc electrolyte in the presence of Cu, Cd, Pb, Sb and Sn additives. Hydrometallurgy 60, 105–116 (2001)

    Article  Google Scholar 

  4. Fosnacht D.R., O’Keefe T.J.: The effects of certain impurities and their interactions on zinc electrowinning. Metall. Trans. 14, 645–655 (1983)

    Article  Google Scholar 

  5. Jennings L.S., Teo K.L.: A computational algorithm for functional inequality constrained optimization problems. Automatica 26(2), 371–375 (1990)

    Article  Google Scholar 

  6. Kaji K., Wong K.H.: Nonlinearly constrained time-delayed optimal control problems. J. Optim. Theory Appl. 82(2), 295–313 (1994)

    Article  Google Scholar 

  7. Karavasteva M.: The influence of copper on the effect of certain surfactants during the cementation of cadmium by suspended zinc particles. Hydrometallurgy 48, 361–366 (1998)

    Article  Google Scholar 

  8. Knapp T.D., Budman H.M., Broderick G.: Adaptive control of a CSTR with neural work model. J. Process Control 11, 53–68 (2001)

    Article  Google Scholar 

  9. Lynch E.B., Ramirez W.F.: Real-time time-optimal control of a stirred tank reactor using Kalman filtering for state estimation. AIChE J. 21(4), 799–804 (1975)

    Article  Google Scholar 

  10. Martin R.B., Teo K.L.: Optimal control of drug administration in cancer chemotherapy. World Scientific, Singapore (1994)

    Google Scholar 

  11. Menoud P., Cavin L., Renken A.: Modelling of heavy metals adsorption to a chelating resin in a fluidized bed reactor. Chem. Eng. Process. 37, 89–101 (1998)

    Article  Google Scholar 

  12. Moghaddam J., Sarraf-Mamoory R., Abdollahy M., Yamini Y.: Purification of zinc ammoniacal leaching solution by cementation: determination of optimum process conditions with experimental design by Taguchi’s method. Sep. Purif. Technol. 51, 157–164 (2006)

    Article  Google Scholar 

  13. Näsi J.: Statistical analysis of cobalt removal from zinc electrolyte using the arsenic-activated process. Hydrometallurgy 73, 123–132 (2004)

    Article  Google Scholar 

  14. Nyman B., Aaltonen A., Hultholm S.E., Karpale K.: Application of new hydrometallurgical developments in the Outokumpu HIKO process. Hydrometallurgy 29, 461–478 (1992)

    Article  Google Scholar 

  15. Raghavan R., Mohanan P.K., Verma S.K.: Modified zinc sulphate solution purification technique to obtain low levels of cobalt for the zinc electrowinning process. Hydrometallurgy 51, 187–206 (1999)

    Article  Google Scholar 

  16. Rehbock V., Teo K.L., Jennings L.S.: Suboptimal feedback control for a class of nonlinear systems using spline interpolation. Discret. Contin. Dyn. Syst. 1(2), 223–236 (1995)

    Article  Google Scholar 

  17. Salehi S., Shahrokhi M.: Two observer-based nonlinear control approaches for temperature control of a class of continuous stirred tank reactors. Chem. Eng. Sci. 63, 396–403 (2008)

    Google Scholar 

  18. Schittkowski, K.: NLPQLP: A Fortran Implementation of a Sequential Quadratic Programming Algorithm with Distributed and Non-monotone Line Search. User’s Guide Version 2.0, University of Bayreuth (2004)

  19. Sędzimir J.A.: Precipitation of metals by metals (cementation)—kinetics, equilibria. Hydrometallurgy 64, 161–167 (2002)

    Article  Google Scholar 

  20. Singh V.: Technological innovation in the zinc electrolyte purification process of a hydrometallurgical zinc plant through reduction in zinc dust consumption. Hydrometallurgy 40, 247–262 (1996)

    Article  Google Scholar 

  21. Stole-Hansen K., Wregget D.A., Gowanlock D., Thwaites P.E.: Model based analysis and control of a cementation process. Comput. Chem. Eng. 21, S1099–S1103 (1997)

    Google Scholar 

  22. Taha A.A., Abd El-Ghani S.A.H.: Effect of surfactants on the cementation of cadmium. J. Colloid Interface Sci. 280, 9–17 (2004)

    Article  Google Scholar 

  23. Teo K.L., Goh C.J., Wong K.H.: A unified computational approach to optimal control problems. Longman Scientific and Technical, Essex, UK (1991)

    Google Scholar 

  24. Tozawa K., Nishimura T., Akahori M., Malaga A.: Comparison between purification processes for zinc leach solutions with arsenic and antimony trioxides. Hydrometallurgy 30, 445–461 (1992)

    Article  Google Scholar 

  25. Van Der Pas V., Dreisinger D.B.: A fundamental study of cobalt cementation by zinc dust in the presence of copper and antimony additives. Hydrometallurgy 43, 187–205 (1996)

    Article  Google Scholar 

  26. Yang D., Xie G., Zeng G., Wang J., Li R.: Mechanism of cobalt removal from zinc sulfate solutions in the presence of cadmium. Hydrometallurgy 81, 62–66 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kok Lay Teo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L.Y., Gui, W.H., Teo, K.L. et al. Optimal control problems arising in the zinc sulphate electrolyte purification process. J Glob Optim 54, 307–323 (2012). https://doi.org/10.1007/s10898-012-9863-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-9863-x

Keywords

Navigation